TY - JOUR A1 - Grass, T. D. A1 - dos Santos, Francisca E. A. A1 - Pelster, Axel T1 - Real-time Ginzburg-Landau theory for bosons in optical lattices JF - Laser physics N2 - Within the Schwinger-Keldysh formalism we derive a Ginzburg-Landau theory for the Bose-Hubbard model which describes the real-time dynamics of the complex order parameter field. Analyzing the excitations in the vicinity of the quantum phase transitions it turns out that particle/hole dispersions in the Mott phase map continuously onto corresponding amplitude/phase excitations in the superfluid phase. Furthermore, in the superfluid phase we find a sound mode, which is in accordance with recent Bragg spectroscopy measurements in the Bogoliubov regime, as well as an additional gapped mode, which seems to have been detected via lattice modulation. Y1 - 2011 U6 - https://doi.org/10.1134/S1054660X11150096 SN - 1054-660X SN - 1555-6611 VL - 21 IS - 8 SP - 1459 EP - 1463 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Draude, F. A1 - Galla, S. A1 - Pelster, Axel A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Haase, Alfred A1 - Mantion, Alexandre A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - ToF-SIMS and Laser-SNMS analysis of macrophages after exposure to silver nanoparticles JF - Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films N2 - Silver nanoparticles (SNPs) are among the most commercialized nanoparticles because of their antibacterial effects. Besides being employed, e. g. as a coatingmaterial for sterile surfaces in household articles and appliances, the particles are also used in a broad range of medical applications. Their antibacterial properties make SNPs especially useful for wound disinfection or as a coating material for prostheses and surgical instruments. Because of their optical characteristics, the particles are of increasing interest in biodetection as well. Despite the widespread use of SNPs, there is little knowledge of their toxicity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (Laser-SNMS) were used to investigate the effects of SNPs on human macrophages derived from THP-1 cells in vitro. For this purpose, macrophages were exposed to SNPs. The SNP concentration ranges were chosen with regard to functional impairments of the macrophages. To optimize the analysis of the macrophages, a special silicon wafer sandwich preparation technique was employed; ToF-SIMS was employed to characterize fragments originating from macrophage cell membranes. With the use of this optimized sample preparation method, the SNP-exposed macrophages were analyzed with ToF-SIMS and with Laser-SNMS. With Laser-SNMS, the three-dimensional distribution of SNPs in cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. We found an accumulation of SNPs directly beneath the cell membrane in a nanoparticular state as well as agglomerations of SNPs inside the cells. KW - Laser-SNMS KW - ToF-SIMS KW - life sciences KW - imaging KW - nanoparticles KW - three-dimensional depth profiling Y1 - 2013 U6 - https://doi.org/10.1002/sia.4902 SN - 0142-2421 VL - 45 IS - 1 SP - 286 EP - 289 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Balaž, Antun A1 - Vidanovic, Ivana A1 - Bogojević, Aleksandar A1 - Pelster, Axel T1 - Ultra-fast converging path-integral approach for rotating ideal Bose-Einstein condensates N2 - A recently developed efficient recursive approach for analytically calculating the short-time evolution of the one-particle propagator to extremely high orders is applied here for numerically studying the thermodynamical and dynamical properties of a rotating ideal Bose gas of Rb-87 atoms in an anharmonic trap. At first, the one-particle energy spectrum of the system is obtained by diagonalizing the discretized short-time propagator. Using this, many-boson properties such as the condensation temperature, the ground-state occupancy, density profiles, and time-of-flight absorption pictures are calculated for varying rotation frequencies. The obtained results improve previous semiclassical calculations, in particular for smaller particle numbers. Furthermore, we find that typical time scales for a free expansion are increased by an order of magnitude for the delicate regime of both critical and overcritical rotation. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/03759601 U6 - https://doi.org/10.1016/j.physleta.2010.01.034 SN - 0375-9601 ER -