TY - THES A1 - Ketzer, Laura T1 - The impact of stellar activity evolution on atmospheric mass loss of young exoplanets T1 - Der Einfluss der stellaren Aktivitätsentwicklung auf den atmosphärischen Massenverlust von jungen Exoplaneten N2 - The increasing number of known exoplanets raises questions about their demographics and the mechanisms that shape planets into how we observe them today. Young planets in close-in orbits are exposed to harsh environments due to the host star being magnetically highly active, which results in high X-ray and extreme UV fluxes impinging on the planet. Prolonged exposure to this intense photoionizing radiation can cause planetary atmospheres to heat up, expand and escape into space via a hydrodynamic escape process known as photoevaporation. For super-Earth and sub-Neptune-type planets, this can even lead to the complete erosion of their primordial gaseous atmospheres. A factor of interest for this particular mass-loss process is the activity evolution of the host star. Stellar rotation, which drives the dynamo and with it the magnetic activity of a star, changes significantly over the stellar lifetime. This strongly affects the amount of high-energy radiation received by a planet as stars age. At a young age, planets still host warm and extended envelopes, making them particularly susceptible to atmospheric evaporation. Especially in the first gigayear, when X-ray and UV levels can be 100 - 10,000 times higher than for the present-day sun, the characteristics of the host star and the detailed evolution of its high-energy emission are of importance. In this thesis, I study the impact of stellar activity evolution on the high-energy-induced atmospheric mass loss of young exoplanets. The PLATYPOS code was developed as part of this thesis to calculate photoevaporative mass-loss rates over time. The code, which couples parameterized planetary mass-radius relations with an analytical hydrodynamic escape model, was used, together with Chandra and eROSITA X-ray observations, to investigate the future mass loss of the two young multiplanet systems V1298 Tau and K2-198. Further, in a numerical ensemble study, the effect of a realistic spread of activity tracks on the small-planet radius gap was investigated for the first time. The works in this thesis show that for individual systems, in particular if planetary masses are unconstrained, the difference between a young host star following a low-activity track vs. a high-activity one can have major implications: the exact shape of the activity evolution can determine whether a planet can hold on to some of its atmosphere, or completely loses its envelope, leaving only the bare rocky core behind. For an ensemble of simulated planets, an observationally-motivated distribution of activity tracks does not substantially change the final radius distribution at ages of several gigayears. My simulations indicate that the overall shape and slope of the resulting small-planet radius gap is not significantly affected by the spread in stellar activity tracks. However, it can account for a certain scattering or fuzziness observed in and around the radius gap of the observed exoplanet population. N2 - Die steigende Anzahl bekannter Exoplaneten wirft Fragen zu ihrer Demografie und den Mechanismen auf, die Planeten in ihre heutige beobachtete Form bringen. Junge Planeten, die sehr nah um ihren Wirtsstern kreisen, sind extremen Umgebungen ausgesetzt, da der Stern eine hohe magnetische Aktivität aufweist. Das führt wiederum dazu, dass der Planet einer enormen Röntgen- und Extrem-UV-Strahlung ausgesetzt ist. Ist der Planet über einen längeren Zeitraum dieser intensiven photoionisierenden Strahlung ausgesetzt, kann dies dazu führen, dass Planetenatmosphären sich aufheizen, ausdehnen und durch einen hydrodynamischen Entweichungsprozess namens Photoevaporation ins All entweichen, sozusagen verdampfen. Bei Planeten, in der Größenordnung von Super-Erden und Sub-Neptunen, kann dies sogar zur vollständigen Erosion ihrer Ur-Atmosphären führen. Ein interessanter Faktor, der für diesen Massenverlustprozess eine Rolle spielt, ist die Aktivitätsentwicklung des Wirtssterns. Die Rotation eines Sterns, die den Dynamo und damit die magnetische Aktivität antreibt, ändert sich im Laufe der Lebensdauer eines Sterns erheblich. Dies hat einen starken Einfluss auf die Menge der hochenergetischen Strahlung, den ein Planet mit zunehmendem Alter des Sterns empfängt. In jungen Jahren besitzen Planeten noch warme und ausgedehnte Hüllen, was sie besonders anfällig für atmosphärische Verdunstung macht. Insbesondere in den ersten Gigajahren, wenn die Röntgen- und UV-Strahlung 100 - 10,000 Mal höher sein kann als bei der heutigen Sonne, sind die Eigenschaften des Wirtssterns und die detaillierte Entwicklung seiner hochenergetischen Emission von Bedeutung. In dieser Arbeit untersuche ich die Auswirkungen der Entwicklung der stellaren Aktivität auf den durch hochenergetische Strahlung verursachten atmosphärischen Massenverlust junger Exoplaneten. Der PLATYPOS-Code wurde im Rahmen dieser Arbeit entwickelt, um die photoevaporativen Massenverlustraten für verschiedene stellare Alter zu berechnen. Der Code verknüpft parametrisierte Planetenmasse-Radius-Beziehungen mit einem analytischen Modell für den hydrodynamischen Massenverlust. Er wurde zusammen mit Chandra- und eROSITA-Röntgenbeobachtungen dazu verwendet, den zukünftigen Massenverlust der beiden jungen Mehrplanetensysteme V1298 Tau und K2-198 zu untersuchen. Darüber hinaus wurde in einer numerischen Ensemblestudie erstmals der Effekt einer realistischen Verteilung von stellaren Aktivitäts-Tracks auf das sogenannte Radius-Tal bei kleinen Planeten untersucht. Die Arbeiten in dieser Dissertation zeigen, dass für einzelne Systeme, insbesondere wenn die Planetenmassen unbestimmt sind, der Unterschied zwischen einem jungen Wirtsstern, der einem Track mit niedriger Aktivität gegenüber einem solchen mit hoher Aktivität folgt, gravierende Auswirkungen haben kann: Die genaue Form der Aktivitätsentwicklung kann darüber entscheiden, ob ein Planet einen Teil seiner Atmosphäre behält oder seine Hülle vollständig verliert und nur den nackten Gesteinskern behält. Für ein Ensemble von simulierten Planeten ändert eine durch Beobachtungen motivierte Verteilung von Aktivitäts-Tracks die endgültige Radiusverteilung der Planeten nach mehreren Gigajahren nicht wesentlich. Meine Simulationen deuten darauf hin, dass die Form und Steigung des sich ergebenden Radius-Tals bei Kleinplaneten nicht wesentlich von der Streuung der stellaren Aktivitäts-Tracks beeinflusst wird. Eine gewisse Streuung oder Unschärfe im Radius-Tal der beobachteten Exoplanetenpopulation kann damit allerdings durchaus erklärt werden. KW - Exoplaneten KW - star-planet interaction KW - stellar physics KW - exoplanets KW - exoplanet atmospheres KW - Sternphysik KW - Stern-Planeten-Wechselwirkung KW - Exoplanetenatmosphären Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-626819 ER - TY - THES A1 - Künstler, Andreas T1 - Spot evolution on the red giant star XX Triangulum T1 - Entwicklung von Sternflecken auf dem roten Riesenstern XX Triangulum N2 - Spots on stellar surfaces are thought to be stellar analogues of sunspots. Thus, starspots are direct manifestations of strong magnetic fields. Their decay rate is directly related to the magnetic diffusivity, which itself is a key quantity for the deduction of an activity cycle length. So far, no single starspot decay has been observed, and thus no stellar activity cycle was inferred from its corresponding turbulent diffusivity. We investigate the evolution of starspots on the rapidly-rotating K0 giant XX Triangulum. Continuous high-resolution and phase-resolved spectroscopy was obtained with the robotic 1.2-m STELLA telescope on Tenerife over a timespan of six years. With our line-profile inversion code iMap we reconstruct a total of 36 consecutive Doppler maps. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte-Carlo approach. It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various time scales and morphology such as spot fragmentation and spot merging as well as spot decay and formation. For the first time, a starspot decay rate on another star than the Sun is determined. From our spot-decay analysis we determine an average linear decay rate of D = -0.067±0.006 Gm^2/day. From this decay rate, we infer a turbulent diffusivity of η_τ = (6.3±0.5) x 10^14 cm^2/s and consequently predict an activity cycle of 26±6 years. The obtained cycle length matches very well with photometric observations. Our time-series of Doppler maps further enables to investigate the differential rotation of XX Tri. We therefore applied a cross-correlation analysis. We detect a weak solar-like differential rotation with a surface shear of α = 0.016±0.003. This value agrees with similar studies of other RS CVn stars. Furthermore, we found evidence for active longitudes and flip-flops. Whereas the more active longitude is located in phase towards the (unseen) companion star, the weaker active longitude is located at the opposite stellar hemisphere. From their periodic appearance, we infer a flip-flop cycle of ~2 years. Both activity phenomena are common on late-type binary stars. Last but not least we redetermine several astrophysical properties of XX Tri and its binary system, as large datasets of photometric and spectroscopic observations are available since its last determination in 1999. Additionally, we compare the rotational spot-modulation from photometric and spectroscopic studies. N2 - Sternflecken gelten als stellare Analoga zu Sonnenflecken. Somit sind Sternflecken direkte Erscheinungsformen starker Magnetfelder. Ihre Zerfallsrate ist direkt mit der magnetischen Diffusivität verknüpft, welche selbst ein Maß für die Länge eines Aktivitätszyklus ist. Bislang konnte noch kein Zerfall eines einzelnen Sternflecks beobachtet werden und somit konnte noch kein stellarer Aktivitätszyklus mittels einer aus dem Fleckenzerfall abgeleiteten Diffusivität bestimmt werden. Wir untersuchen die Entwicklung von Sternflecken auf dem schnell rotierenden K0 Riesenstern XX Triangulum. Über einen Zeitraum von sechs Jahren wurden durchgängig hochauflösende Spektren mit dem 1.2-m STELLA Teleskop auf Teneriffa aufgenommen. Mit unserem Inversionscode für Linienprofile (iMap) werden insgesamt 36 Dopplerkarten der Sternoberfläche rekonstruiert. Um sowohl den Zerfall als auch die Entstehung von Sternflecken zu bestimmen, werden die rekonstruierten Dopplerkarten mit vereinfachten Fleckenmodellen mittels einer Monte-Carlo-Methode abgebildet. Es zeigt sich, dass die Oberfläche von XX Tri mit großen Flecken auf hohen und sogar polaren Breiten bedeckt ist sowie gelegentlichen kleineren Flecken nahe des Äquators. Gerade in der Zeitspanne von sechs Jahren sehen wir eine systematische Veränderung der Fleckenverteilung auf unterschiedlichen Zeitskalen und mit unterschiedlicher Morphologie, wie Fleckenaufspaltung und Fleckenvereinigung sowie Fleckenzerfall und Fleckenentstehung. Zum ersten Mal wird die Zerfallsrate eines Sternflecks auf einem anderen Stern als der Sonne bestimmt. Von unserer Fleckenzerfallsanalyse bestimmen wir eine mittlere lineare Zerfallsrate von D = -0.067±0.006 Gm^2/d. Von dieser Zerfallsrate leiten wir eine turbulente Diffusivität von η_τ = (6.3±0.5) x 10^14 cm^2/s ab, und schließen daraus einen Aktivitätszyklus von 26±6 Jahren. Diese Zykluslänge stimmt gut mit photometrischen Beobachtungen überein. Unsere Dopplerkarten ermöglichen zusätzlich die Untersuchung der differentiellen Rotation auf XX Tri, wofür eine Kreuzkorrelationsmethode angewandt wird. Wir detektieren eine schwache sonnenähnliche differentielle Rotation mit einer Oberflächenscherung von α = 0.016±0.003. Dieser Wert stimmt mit vergleichbaren Untersuchungen anderer RS CVn-Sterne überein. Zudem haben wir Anzeichen für aktive Longituden und Flip-Flops gefunden. Während sich die aktivere Longitude in Phase zu dem (nicht sichtbaren) Begleitstern befindet, liegt die schwächere aktive Longitude auf der gegenüberliegenden Hemisphäre. Aus ihrem periodischen Auftreten schließen wir auf einen Flip-Flop-Zyklus von ungefähr zwei Jahren. Beide Aktivitätserscheinungen sind häufig auf Doppelsternen späten Spektraltyps zu finden. Zu guter Letzt bestimmen wir die astrophysikalischen Eigenschaften von XX Tri neu, da seit der letzten Bestimmung im Jahre 1999 große neue Datensätze unterschiedlicher Beobachtungen vorhanden sind. Zusätzlich vergleichen wir die periodische Fleckenmodulation aus photometrischen und spektroskopischen Analysen. KW - stellar physics KW - stellar activity KW - Doppler imaging KW - Sternphysik KW - Sternaktivität KW - Doppler Imaging Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-84008 ER -