TY - JOUR A1 - Farrag, Mostafa A1 - Brill, Fabio Alexander A1 - Nguyen, Viet Dung A1 - Sairam, Nivedita A1 - Schröter, Kai A1 - Kreibich, Heidi A1 - Merz, Bruno A1 - de Bruijn, Karin M. A1 - Vorogushyn, Sergiy T1 - On the role of floodplain storage and hydrodynamic interactions in flood risk estimation JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Hydrodynamic interactions, i.e. the floodplain storage effects caused by inundations upstream on flood wave propagation, inundation areas, and flood damage downstream, are important but often ignored in large-scale flood risk assessments. Although new methods considering these effects sometimes emerge, they are often limited to a small or meso scale. In this study, we investigate the role of hydrodynamic interactions and floodplain storage on flood hazard and risk in the German part of the Rhine basin. To do so, we compare a new continuous 1D routing scheme within a flood risk model chain to the piece-wise routing scheme, which largely neglects floodplain storage. The results show that floodplain storage is significant, lowers water levels and discharges, and reduces risks by over 50%. Therefore, for accurate risk assessments, a system approach must be adopted, and floodplain storage and hydrodynamic interactions must carefully be considered. KW - hydrodynamic interactions KW - derived flood risk analysis KW - flood modelling; KW - Rhine basin Y1 - 2022 U6 - https://doi.org/10.1080/02626667.2022.2030058 SN - 0262-6667 SN - 2150-3435 VL - 67 IS - 4 SP - 508 EP - 534 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Brill, Fabio Alexander A1 - Passuni Pineda, Silvia A1 - Espichan Cuya, Bruno A1 - Kreibich, Heidi T1 - A data-mining approach towards damage modelling for El Nino events in Peru JF - Geomatics, natural hazards and risk N2 - Compound natural hazards likeEl Ninoevents cause high damage to society, which to manage requires reliable risk assessments. Damage modelling is a prerequisite for quantitative risk estimations, yet many procedures still rely on expert knowledge, and empirical studies investigating damage from compound natural hazards hardly exist. A nationwide building survey in Peru after theEl Ninoevent 2017 - which caused intense rainfall, ponding water, flash floods and landslides - enables us to apply data-mining methods for statistical groundwork, using explanatory features generated from remote sensing products and open data. We separate regions of different dominant characteristics through unsupervised clustering, and investigate feature importance rankings for classifying damage via supervised machine learning. Besides the expected effect of precipitation, the classification algorithms select the topographic wetness index as most important feature, especially in low elevation areas. The slope length and steepness factor ranks high for mountains and canyons. Partial dependence plots further hint at amplified vulnerability in rural areas. An example of an empirical damage probability map, developed with a random forest model, is provided to demonstrate the technical feasibility. KW - Natural hazard KW - damage model KW - residential buildings KW - data-mining KW - remote KW - sensing KW - open data Y1 - 2020 U6 - https://doi.org/10.1080/19475705.2020.1818636 SN - 1947-5705 SN - 1947-5713 VL - 11 IS - 1 SP - 1966 EP - 1990 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -