TY - JOUR A1 - Zaccarelli, Riccardo A1 - Bindi, Dino A1 - Strollo, Angelo A1 - Quinteros, Javier A1 - Cotton, Fabrice Pierre T1 - Stream2segment: An Open-Source Tool for Downloading, Processing, and Visualizing Massive Event-Based Seismic Waveform Datasets JF - Seismological research letters N2 - The task of downloading comprehensive datasets of event-based seismic waveforms has been made easier through the development of standardized webservices but is still highly nontrivial because the likelihood of temporary network failures or subtle data errors naturally increases when the amount of requested data is in the order of millions of relatively short segments. This is even more challenging because the typical workflow is not restricted to a single massive download but consists of fetching all possible available input data (e.g., with several repeated download executions) for a processing stage producing any desired user-defined output. Here, we present stream2segment, a highly customizable Python 2+3 package helping the user in the entire workflow of downloading, inspecting, and processing event-based seismic data by means of a relational database management system as archiving storage, which has clear performance and usability advantages, and an integrated processing subroutine requiring a configuration file and a single Python function to produce user-defined output. Stream2segment can also produce diagnostic maps or user-defined plots, which, unlike existing tools, do not require external software dependencies and are not static images but instead are interactive browser-based applications ideally suited for data inspection or annotation tasks and subsequent training of classifiers in foreseen supervised machine-learning applications. Stream2segment has already been used as a data quality tool for datasets within the European Integrated Data Archive and to create a weak-motion database (in the form of a so-called flat file) for the stable continental region of Europe in the context of the European Ground Shaking Intensity Model service, in turn an important building block for seismic hazard studies. Y1 - 2019 U6 - https://doi.org/10.1785/0220180314 SN - 0895-0695 SN - 1938-2057 VL - 90 IS - 5 SP - 2028 EP - 2038 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Bindi, Dino A1 - Picozzi, Matteo A1 - Spallarossa, Daniele A1 - Cotton, Fabrice Pierre A1 - Kotha, Sreeram Reddy T1 - Impact of Magnitude Selection on Aleatory Variability Associated with Ground-Motion Prediction Equations BT - Part II-Analysis of the Between-Event Distribution in Central Italy JF - Bulletin of the Seismological Society of America N2 - We derive a set of regional ground-motion prediction equations (GMPEs) in the Fourier amplitude spectra (FAS-GMPE) and in the spectral acceleration (SA-GMPE) domains for the purpose of interpreting the between-event residuals in terms of source parameter variability. We analyze a dataset of about 65,000 recordings generated by 1400 earthquakes (moment magnitude 2: 5 <= M-w <= 6: 5, hypocentral distance R-hypo <= 150 km) that occurred in central Italy between January 2008 and October 2017. In a companion article (Bindi, Spallarossa, et al., 2018), the nonparametric acceleration source spectra were interpreted in terms of omega-square models modified to account for deviations from a high-frequency flat plateau through a parameter named k(source). Here, the GMPEs are derived considering the moment (M-w), the local (M-L), and the energy (M-e) magnitude scales, and the between-event residuals are computed as random effects. We show that the between-event residuals for the FAS-GMPE implementing M-w are correlated with stress drop, with correlation coefficients increasing with increasing frequency up to about 10 Hz. Contrariwise, the correlation is weak for the FAS-GMPEs implementing M-L and M-e, in particular between 2 and 5 Hz, where most of the corner frequencies lie. At higher frequencies, all models show a strong correlation with k(source). The correlation with the source parameters reflects in a different behavior of the standard deviation tau of the between-event residuals with frequency. Although tau is smaller for the FAS-GMPE using M-w below 1.5 Hz, at higher frequencies, the model implementing either M-L or M-e shows smaller values, with a reduction of about 30% at 3 Hz (i.e., from 0.3 for M-w to 0.1 for M-L). We conclude that considering magnitude scales informative for the stress-drop variability allows to reduce the between-event variability with a significant impact on the hazard assessment, in particular for studies in which the ergodic assumption on site is removed. Y1 - 2019 U6 - https://doi.org/10.1785/0120180239 SN - 0037-1106 SN - 1943-3573 VL - 109 IS - 1 SP - 251 EP - 262 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Bora, Sanjay Singh A1 - Cotton, Fabrice Pierre A1 - Scherbaum, Frank T1 - NGA-West2 Empirical Fourier and Duration Models to Generate Adjustable Response Spectra JF - Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute N2 - Adjustment of median ground motion prediction equations (GMPEs) from one region to another region is one of the major challenges within the current practice of seismic hazard analysis. In our approach of generating response spectra, we derive two separate empirical models for a) Fourier amplitude spectrum (FAS) and b) duration of ground motion. To calculate response spectra, the two models are combined within the random vibration theory (RVT) framework. The models are calibrated on recordings obtained from shallow crustal earthquakes in active tectonic regions. We use a subset of NGA-West2 database with M3.2-7.9 earthquakes at distances 0-300 km. The NGA-West2 database expanded over a wide magnitude and distance range facilitates a better constraint over derived models. A frequency-dependent duration model is derived to obtain adjustable response spectral ordinates. Excellent comparison of our approach with other NGA-West2 models implies that it can also be used as a stand-alone model. Y1 - 2019 U6 - https://doi.org/10.1193/110317EQS228M SN - 8755-2930 SN - 1944-8201 VL - 35 IS - 1 SP - 61 EP - 93 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Kotha, Sreeram Reddy A1 - Cotton, Fabrice Pierre A1 - Bindi, Dino T1 - Empirical models of shear-wave radiation pattern derived from large datasets of ground-shaking observations JF - Scientific reports N2 - Shear-waves are the most energetic body-waves radiated from an earthquake, and are responsible for the destruction of engineered structures. In both short-term emergency response and long-term risk forecasting of disaster-resilient built environment, it is critical to predict spatially accurate distribution of shear-wave amplitudes. Although decades’ old theory proposes a deterministic, highly anisotropic, four-lobed shear-wave radiation pattern, from lack of convincing evidence, most empirical ground-shaking prediction models settled for an oversimplified stochastic radiation pattern that is isotropic on average. Today, using the large datasets of uniformly processed seismograms from several strike, normal, reverse, and oblique-slip earthquakes across the globe, compiled specifically for engineering applications, we could reveal, quantify, and calibrate the frequency-, distance-, and style-of-faulting dependent transition of shear-wave radiation between a stochastic-isotropic and a deterministic-anisotropic phenomenon. Consequent recalibration of empirical ground-shaking models dramatically improved their predictions: with isodistant anisotropic variations of ±40%, and 8% reduction in uncertainty. The outcomes presented here can potentially trigger a reappraisal of several practical issues in engineering seismology, particularly in seismic ground-shaking studies and seismic hazard and risk assessment. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-37524-4 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Pilz, Marco A1 - Cotton, Fabrice Pierre T1 - Does the One-Dimensional Assumption Hold for Site Response Analysis? BT - A Study of Seismic Site Responses and Implication for Ground Motion Assessment Using KiK-Net Strong-Motion Data JF - Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute N2 - The one-dimensional (1-D) approach is still the dominant method to incorporate site effects in engineering applications. To bridge the 1-D to multidimensional site response analysis, we develop quantitative criteria and a reproducible method to identify KiK-net sites with significant deviations from 1-D behavior. We found that 158 out of 354 show two-dimensional (2-D) and three-dimensional (3-D) effects, extending the resonance toward shorter periods at which 2-D or 3-D site effects exceed those of the classic 1-D configurations and imposing an additional amplification to that caused by the impedance contrast alone. Such 2-D and 3-D effects go along with a large within-station ground motion variability. Remarkably, these effects are found to be more pronounced for small impedance contrasts. While it is hardly possible to identify common features in ground motion behavior for stations with similar topography typologies, it is not over-conservative to apply a safety factor to account for 2-D and 3-D site effects in ground motion modeling. Y1 - 2019 U6 - https://doi.org/10.1193/050718EQS113M SN - 8755-2930 SN - 1944-8201 VL - 35 IS - 2 SP - 883 EP - 905 PB - Earthquake Engineering Research Institute CY - Oakland ER - TY - JOUR A1 - Pilz, Marco A1 - Cotton, Fabrice Pierre A1 - Zaccarelli, Riccardo A1 - Bindi, Dino T1 - Capturing Regional Variations of Hard-Rock Attenuation in Europe JF - Bulletin of the Seismological Society of America N2 - A proper assessment of seismic reference site conditions has important applications as they represent the basis on which ground motions and amplifications are generally computed. Besides accounting for the average S-wave velocity over the uppermost 30 m (V-S30), the parameterization of high-frequency ground motions beyond source-corner frequency received significant attention. kappa, an empirical parameter introduced by Anderson and Hough (1984), is often used to represent the spectral decay of the acceleration spectrum at high frequencies. The lack of hard-rock records and the poor understanding of the physics of kappa introduced significant epistemic uncertainty in the final seismic hazard of recent projects. Thus, determining precise and accurate regional hard-rock kappa(0) values is critical. We propose an alternative procedure for capturing the reference kappa(0) on regional scales by linking thewell-known high-frequency attenuation parameter kappa and the properties of multiple-scattered coda waves. Using geological and geophysical data around more than 1300 stations for separating reference and soft soil sites and based on more than 10,000 crustal earthquake recordings, we observe that kappa(0) from multiple-scattered coda waves seems to be independent of the soil type but correlated with the hard-rock kappa(0), showing significant regional variations across Europe. The values range between 0.004 s for northern Europe and 0.020 s for the southern and southeastern parts. On the other hand, measuring kappa (and correspondingly kappa(0)) on the S-wave window (as classically proposed), the results are strongly affected by transmitted (reflected, refracted, and scattered) waves included in the analyzed window biasing the proper assessment of kappa(0). This effect is more pronounced for soft soil sites. In this way, kappa(coda)(0) can serve as a proxy for the regional hard-rock kappa(0) at the reference sites. Y1 - 2019 U6 - https://doi.org/10.1785/0120190023 SN - 0037-1106 SN - 1943-3573 VL - 109 IS - 4 SP - 1401 EP - 1418 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Zhu, Chuanbin A1 - Cotton, Fabrice Pierre A1 - Pilz, Marco T1 - Testing the Depths to 1.0 and 2.5 km/s Velocity Isosurfaces in a Velocity Model for Japan and Implications for Ground-Motion Modeling JF - Bulletin of the Seismological Society of America N2 - In the Next Generation Attenuation West2 (NGA-West2) project, a 3D subsurface structure model (Japan Seismic Hazard Information Station [J-SHIS]) was queried to establish depths to 1.0 and 2.5 km/s velocity isosurfaces for sites without depth measurement in Japan. In this article, we evaluate the depth parameters in the J-SHIS velocity model by comparing them with their corresponding site-specific depth measurements derived from selected KiK-net velocity profiles. The comparison indicates that the J-SHIS model underestimates site depths at shallow sites and overestimates depths at deep sites. Similar issues were also identified in the southern California basin model. Our results also show that these underestimations and over-estimations have a potentially significant impact on ground-motion prediction using NGA-West2 ground-motion models (GMMs). Site resonant period may be considered as an alternative to depth parameter in the site term of a GMM. Y1 - 2019 U6 - https://doi.org/10.1785/0120190016 SN - 0037-1106 SN - 1943-3573 VL - 109 IS - 6 SP - 2710 EP - 2721 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Zhu, Chuanbin A1 - Pilz, Marco A1 - Cotton, Fabrice Pierre T1 - Which is a better proxy, site period or depth to bedrock, in modelling linear site response in addition to the average shear-wave velocity? JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - This study aims to identify the best-performing site characterization proxy alternative and complementary to the conventional 30 m average shear-wave velocity V-S30, as well as the optimal combination of proxies in characterizing linear site response. Investigated proxies include T-0 (site fundamental period obtained from earthquake horizontal-to-vertical spectral ratios), V-Sz (measured average shear-wave velocities to depth z, z = 5, 10, 20 and 30 m), Z(0.8) and Z(1.0) (measured site depths to layers having shear-wave velocity 0.8 and 1.0 km/s, respectively), as well as Z(x-infer) (inferred site depths from a regional velocity model, x = 0.8 and 1.0, 1.5 and 2.5 km/s). To evaluate the performance of a site proxy or a combination, a total of 1840 surface-borehole recordings is selected from KiK-net database. Site amplifications are derived using surface-to-borehole response-, Fourier- and cross-spectral ratio techniques and then are compared across approaches. Next, the efficacies of 7 single-proxies and 11 proxy-pairs are quantified based on the site-to-site standard deviation of amplification residuals of observation about prediction using the proxy or the pair. Our results show that T-0 is the best-performing single-proxy among T-0, Z(0.8), Z(1.0) and V-Sz. Meanwhile, T-0 is also the best-performing proxy among T-0, Z(0.8), Z(1.0) and Z(x-infer) complementary to V-S30 in accounting for the residual amplification after V-S30-correction. Besides, T-0 alone can capture most of the site effects and should be utilized as the primary site indicator. Though (T-0, V-S30) is the best-performing proxy pair among (V-S30, T-0), (V-S30, Z(0.8)), (V-S30, Z(1.0)), (V-S30, Z(x-infer)) and (T-0, V-Sz), it is only slightly better than (T-0, V-S20). Considering both efficacy and engineering utility, the combination of T-0 (primary) and V-S20 (secondary) is recommended. Further study is needed to test the performances of various proxies on sites in deep sedimentary basins. KW - Site effects KW - Amplification KW - Site proxy KW - Surface-to-borehole spectral ratios KW - KiK-net KW - Earthquake Y1 - 2019 U6 - https://doi.org/10.1007/s10518-019-00738-6 SN - 1570-761X SN - 1573-1456 VL - 18 IS - 3 SP - 797 EP - 820 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - von Specht, Sebastian A1 - Öztürk, Ugur A1 - Veh, Georg A1 - Cotton, Fabrice Pierre A1 - Korup, Oliver T1 - Effects of finite source rupture on landslide triggering BT - the 2016 M-w 7.1 Kumamoto earthquake JF - Solid earth N2 - The propagation of a seismic rupture on a fault introduces spatial variations in the seismic wave field surrounding the fault. This directivity effect results in larger shaking amplitudes in the rupture propagation direction. Its seismic radiation pattern also causes amplitude variations between the strike-normal and strike-parallel components of horizontal ground motion. We investigated the landslide response to these effects during the 2016 Kumamoto earthquake (M-w 7.1) in central Kyushu (Japan). Although the distribution of some 1500 earthquake-triggered landslides as a function of rupture distance is consistent with the observed Arias intensity, the landslides were more concentrated to the northeast of the southwest-northeast striking rupture. We examined several landslide susceptibility factors: hillslope inclination, the median amplification factor (MAF) of ground shaking, lithology, land cover, and topographic wetness. None of these factors sufficiently explains the landslide distribution or orientation (aspect), although the landslide head scarps have an elevated hillslope inclination and MAF. We propose a new physics-based ground-motion model (GMM) that accounts for the seismic rupture effects, and we demonstrate that the low-frequency seismic radiation pattern is consistent with the overall landslide distribution. Its spatial pattern is influenced by the rupture directivity effect, whereas landslide aspect is influenced by amplitude variations between the fault-normal and fault-parallel motion at frequencies < 2 Hz. This azimuth dependence implies that comparable landslide concentrations can occur at different distances from the rupture. This quantitative link between the prevalent landslide aspect and the low-frequency seismic radiation pattern can improve coseismic landslide hazard assessment. Y1 - 2019 U6 - https://doi.org/10.5194/se-10-463-2019 SN - 1869-9510 SN - 1869-9529 VL - 10 IS - 2 SP - 463 EP - 486 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Bayona Viveros, Jose Antonio A1 - von Specht, Sebastian A1 - Strader, Anne A1 - Hainzl, Sebastian A1 - Cotton, Fabrice Pierre A1 - Schorlemmer, Danijel T1 - A Regionalized Seismicity Model for Subduction Zones Based on Geodetic Strain Rates, Geomechanical Parameters, and Earthquake-Catalog Data JF - Bulletin of the Seismological Society of America N2 - The Seismic Hazard Inferred from Tectonics based on the Global Strain Rate Map (SHIFT_GSRM) earthquake forecast was designed to provide high-resolution estimates of global shallow seismicity to be used in seismic hazard assessment. This model combines geodetic strain rates with global earthquake parameters to characterize long-term rates of seismic moment and earthquake activity. Although SHIFT_GSRM properly computes seismicity rates in seismically active continental regions, it underestimates earthquake rates in subduction zones by an average factor of approximately 3. We present a complementary method to SHIFT_GSRM to more accurately forecast earthquake rates in 37 subduction segments, based on the conservation of moment principle and the use of regional interface seismicity parameters, such as subduction dip angles, corner magnitudes, and coupled seismogenic thicknesses. In seven progressive steps, we find that SHIFT_GSRM earthquake-rate underpredictions are mainly due to the utilization of a global probability function of seismic moment release that poorly captures the great variability among subduction megathrust interfaces. Retrospective test results show that the forecast is consistent with the observations during the 1 January 1977 to 31 December 2014 period. Moreover, successful pseudoprospective evaluations for the 1 January 2015 to 31 December 2018 period demonstrate the power of the regionalized earthquake model to properly estimate subduction-zone seismicity. Y1 - 2019 U6 - https://doi.org/10.1785/0120190034 SN - 0037-1106 SN - 1943-3573 VL - 109 IS - 5 SP - 2036 EP - 2049 PB - Seismological Society of America CY - Albany ER -