TY - GEN A1 - Woting, Anni A1 - Blaut, Michael T1 - The intestinal microbiota in metabolic disease T2 - Nutrients N2 - Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet-host-microbe interactions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 448 KW - intestinal microbiota KW - obesity KW - diabetes KW - metabolic syndrome KW - energy harvest KW - diet KW - absorption KW - bile acids KW - low-grade inflammation KW - SCFA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407687 ER - TY - JOUR A1 - Moser, Othmar A1 - Mader, Julia K. A1 - Tschakert, Gerhard A1 - Mueller, Alexander A1 - Groeschl, Werner A1 - Pieber, Thomas R. A1 - Koehler, Gerd A1 - Messerschmidt, Janin A1 - Hofmann, Peter T1 - Accuracy of Continuous Glucose Monitoring (CGM) during Continuous and High-Intensity Interval Exercise in Patients with Type 1 Diabetes Mellitus JF - Nutrients N2 - Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5% below (L) and above (M) the first lactate turn point (LTP1), and 5% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (-3.44, 5.15) mmol.L-1, -0.45 (-3.95, 3.05) mmol.L-1, -0.31 (-8.83, 8.20) mmol.L-1 and at 1.17 (-2.06, 4.40) mmol.L-1, 0.11 (-5.79, 6.01) mmol.L-1, 1.48 (-2.60, 5.57) mmol.L-1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise. KW - continuous glucose monitoring KW - exercise KW - diabetes KW - blood glucose Y1 - 2016 U6 - https://doi.org/10.3390/nu8080489 SN - 2072-6643 VL - 8 PB - MDPI CY - Basel ER -