TY - GEN A1 - Cajar, Anke A1 - Schneeweiß, Paul A1 - Engelbert, Ralf A1 - Laubrock, Jochen T1 - Coupling of attention and saccades when viewing scenes with central and peripheral degradation N2 - Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 316 KW - scene viewing KW - saccades KW - attention KW - gaze-contingent displays KW - spatial frequencies KW - tunnel vision Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394918 ER - TY - JOUR A1 - Cajar, Anke A1 - Schneeweiß, Paul A1 - Engbert, Ralf A1 - Laubrock, Jochen T1 - Coupling of attention and saccades when viewing scenes with central and peripheral degradation JF - Journal of Vision N2 - Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations. KW - scene viewing KW - saccades KW - attention KW - gaze-contingent displays KW - spatial frequencies KW - tunnel vision Y1 - 2016 U6 - https://doi.org/10.1167/16.2.8 SN - 1534-7362 VL - 16 IS - 2 SP - 1 EP - 19 PB - ARVO CY - Rockville, Md. ER - TY - JOUR A1 - Cajar, Anke A1 - Schneeweiss, Paul A1 - Engbert, Ralf A1 - Laubrock, Jochen T1 - Coupling of attention and saccades when viewing scenes with central and peripheral degradation JF - Journal of vision N2 - Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations. KW - scene viewing KW - saccades KW - attention KW - gaze-contingent displays KW - spatial frequencies KW - tunnel vision Y1 - 2016 U6 - https://doi.org/10.1167/16.2.8 SN - 1534-7362 VL - 16 PB - Association for Research in Vision and Opthalmology CY - Rockville ER - TY - JOUR A1 - Sperlich, Anja A1 - Meixner, Johannes A1 - Laubrock, Jochen T1 - Development of the perceptual span in reading BT - A longitudinal study JF - Journal of experimental child psychology N2 - The perceptual span is a standard measure of parafoveal processing, which is considered highly important for efficient reading. Is the perceptual span a stable indicator of reading performance? What drives its development? Do initially slower and faster readers converge or diverge over development? Here we present the first longitudinal data on the development of the perceptual span in elementary school children. Using the moving window technique, eye movements of 127 German children in three age groups (Grades 1, 2, and 3 in Year 1) were recorded at two time points (T1 and T2) 1 year apart. Introducing a new measure of the perceptual span, nonlinear mixed-effects modeling was used to separate window size effects from asymptotic reading performance. Cross-sectional differences were well replicated longitudinally. Asymptotic reading rate increased monotonously with grade, but in a decelerating fashion. A significant change in the perceptual span was observed only between Grades 2 and 3. Together with results from a cross-lagged panel model, this suggests that the perceptual span increases as a consequence of relatively well established word reading. Stabilities of observed and predicted reading rates were high after Grade 1, whereas the perceptual span was only moderately stable for all grades. Comparing faster and slower readers as assessed at T1, in general, a pattern of stable between-group differences emerged rather than a compensatory pattern; second and third graders even showed a Matthew effect in reading rate and the perceptual span, respectively. (C) 2016 Elsevier Inc. All rights reserved. KW - Longitudinal study KW - Reading development KW - Eye movements KW - Perceptual span KW - Moving window KW - Nonlinear mixed-effects modeling Y1 - 2016 U6 - https://doi.org/10.1016/j.jecp.2016.02.007 SN - 0022-0965 SN - 1096-0457 VL - 146 SP - 181 EP - 201 PB - Elsevier CY - New York ER - TY - GEN A1 - Cajar, Anke A1 - Engbert, Ralf A1 - Laubrock, Jochen T1 - Eye movements during gaze-contingent spatial-frequency filtering of real-world scenes: Effects of filter location, cutoff, and size T2 - Perception Y1 - 2016 SN - 0301-0066 SN - 1468-4233 VL - 45 SP - 126 EP - 126 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Cajar, Anke A1 - Engbert, Ralf A1 - Laubrock, Jochen T1 - Spatial frequency processing in the central and peripheral visual field during scene viewing JF - Vision research : an international journal for functional aspects of vision. N2 - Visuospatial attention and gaze control depend on the interaction of foveal and peripheral processing. The foveal and peripheral regions of the visual field are differentially sensitive to parts of the spatial frequency spectrum. In two experiments, we investigated how the selective attenuation of spatial frequencies in the central or the peripheral visual field affects eye-movement behavior during real-world scene viewing. Gaze-contingent low-pass or high-pass filters with varying filter levels (i.e., cutoff frequencies; Experiment 1) or filter sizes (Experiment 2) were applied. Compared to unfiltered control conditions, mean fixation durations increased most with central high-pass and peripheral low-pass filtering. Increasing filter size prolonged fixation durations with peripheral filtering, but not with central filtering. Increasing filter level prolonged fixation durations with low-pass filtering, but not with high-pass filtering. These effects indicate that fixation durations are not always longer under conditions of increased processing difficulty. Saccade amplitudes largely adapted to processing difficulty: amplitudes increased with central filtering and decreased with peripheral filtering; the effects strengthened with increasing filter size and filter level. In addition, we observed a trade-off between saccade timing and saccadic selection, since saccade amplitudes were modulated when fixation durations were unaffected by the experimental manipulations. We conclude that interactions of perception and gaze control are highly sensitive to experimental manipulations of input images as long as the residual information can still be accessed for gaze control. (C) 2016 Elsevier Ltd. All rights reserved. KW - Eye movements KW - Scene viewing KW - Spatial frequencies KW - Gaze-contingent displays Y1 - 2016 U6 - https://doi.org/10.1016/j.visres.2016.05.008 SN - 0042-6989 SN - 1878-5646 VL - 127 SP - 186 EP - 197 PB - Elsevier CY - Oxford ER -