TY - JOUR A1 - Uhr, Linda A1 - Wieland, Phillis A1 - Homann, Thomas A1 - Huschek, Gerd A1 - Rawel, Harshadrai Manilal T1 - Identification and LC-MS/MS-based analyses of technical enzymes in wheat flour and baked products JF - European food research and technology : official organ of the EuCheMS, Division of Food Chemistry N2 - The use of technical enzymes in bakery industry is necessary for a consistent and good quality of baked products. Since the cultivation of cereals leads to low amounts of endogenous enzymes being present, a need of their commercial alternatives is becoming a routine process in order to meet the consumer quality demands. Targeted quantification proteomics-based methods are necessary for their detection to meet the regulatory criteria. Here, we initially report on the identification of Lipase FE-01, a lipase from fungus Thermomyces lanuginosus, as analyzed by SDS-PAGE, in-Gel digestion, and MALDI-TOF-MS. In further experiments, the focus of the study was directed toward an extensive use and optimization of in-solution enzymatic digestion in combination with LC-MS/MS techniques in identification of specific peptide markers and finally in utilization of the latter in delivering reproducible quantification data for several different technical enzymes (alpha-amylases, xylanase, and lipases from microbial origin) in complex matrices such as baked bread and wheat flour. Two digestion protocols (a fast option using thermocycler program and the well-established overnight method) were tested, and both of these can be successfully applied. The application of isotopically labeled analogs of the MRM targeted peptides as internal standards and the addition of an internal protein standard during the extraction/digestion experiment were compared to determine the optimal quantification algorithm of the recovered enzyme concentrations. Thus, a standardized sensitive LC-MS/MS method could be developed to determine technical enzymes as forthcoming ingredients in the prefabricated food formulations in concentrations lower than 10 ppm. KW - Technical enzymes KW - Amylase KW - Xylanase KW - Lipase KW - Baked products KW - Mass spectrometry Y1 - 2016 U6 - https://doi.org/10.1007/s00217-015-2536-5 SN - 1438-2377 SN - 1438-2385 VL - 242 SP - 247 EP - 257 PB - Springer CY - New York ER - TY - JOUR A1 - Reinkensmeier, Annika A1 - Steinbrenner, Katrin A1 - Homann, Thomas A1 - Bussler, Sara A1 - Rohn, Sascha A1 - Rawel, Harshadrai Manilal T1 - Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds JF - Food chemistry N2 - Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333 nakt/mL in different apple varieties. From these, ‘Braeburn’ was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products. KW - Apple polyphenoloxidase KW - Phenol-amino-adducts KW - Post-translational protein modification KW - Functionality Y1 - 2016 U6 - https://doi.org/10.1016/j.foodchem.2015.07.145 SN - 0308-8146 SN - 1873-7072 VL - 194 SP - 76 EP - 85 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin JF - Scientific reports N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization – time of flight – mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. KW - n-acetyl-cysteine KW - s-glutathionylation KW - force-field KW - c. elegans KW - life-span KW - protein KW - cells KW - menadione KW - disease KW - binding Y1 - 2016 U6 - https://doi.org/10.1038/srep37346 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - GEN A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization – time of flight – mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 312 KW - binding KW - c. elegans KW - cells KW - disease KW - force-field KW - life-span KW - menadione KW - n-acetyl-cysteine KW - protein KW - s-glutathionylation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103674 ER - TY - JOUR A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin JF - Scientific reports N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time-and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. Y1 - 2016 U6 - https://doi.org/10.1038/srep37346 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER -