TY - JOUR A1 - Silveira, Raul De Souza A1 - Carlsohn, Anja A1 - Langen, Georg A1 - Mayer, Frank A1 - Scharhag-Rosenberger, Friederike T1 - Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry JF - Journal of the International Society of Sports Nutrition N2 - Background: Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fat(peak)) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fat(peak) as well as its actual velocity (VPFO) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of VPFO and Fat(peak) during treadmill ergometry running. Conclusion: In summary, relative and absolute reliability indicators for V-PFO and Fat(peak) were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated. KW - Peak fat oxidation KW - Reliability KW - Variability KW - Running KW - Treadmill ergometry Y1 - 2016 U6 - https://doi.org/10.1186/s12970-016-0115-1 SN - 1550-2783 VL - 13 PB - BioMed Central CY - London ER - TY - GEN A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 284 KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90108 ER - TY - JOUR A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years JF - PLoS one N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149924 SN - 1932-6203 VL - 11 IS - 2 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - JOUR A1 - Mueller, Steffen A1 - Carlsohn, Anja A1 - Mueller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years JF - PLoS one N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149924 SN - 1932-6203 VL - 11 SP - 1710 EP - 1717 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - De Souza Silveira, Raul A1 - Carlsohn, Anja A1 - Langen, Georg A1 - Mayer, Frank A1 - Scharhag-Rosenberger, Friederike T1 - Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fat peak ) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fat peak as well as its actual velocity (V PFO ) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of V PFO and Fat peak during treadmill ergometry running. Methods: Sixteen recreational athletes (f = 7, m = 9; 25 ± 3 y; 1.76 ± 0.09 m; 68.3 ± 13.7 kg; 23.1 ± 2.9 kg/m 2 ) performed 2 different running protocols on 3 different days with standardized nutrition the day before testing. At day 1, peak oxygen uptake (VO 2peak ) and the velocities at the aerobic threshold (V LT ) and respiratory exchange ratio (RER) of 1.00 (V RER ) were assessed. At days 2 and 3, subjects ran an identical submaximal incremental test (Fat-peak test) composed of a 10 min warm-up (70 % V LT ) followed by 5 stages of 6 min with equal increments (stage 1 = V LT , stage 5 = V RER ). Breath-by-breath gas exchange data was measured continuously and used to determine fat oxidation rates. A third order polynomial function was used to identify V PFO and subsequently Fat peak . The reproducibility and variability of variables was verified with an int raclass correlation coef ficient (ICC), Pearson ’ s correlation coefficient, coefficient of variation (CV) an d the mean differences (bias) ± 95 % limits of agreement (LoA). Results: ICC, Pearson ’ s correlation and CV for V PFO and Fat peak were 0.98, 0.97, 5.0 %; and 0.90, 0.81, 7.0 %, respectively. Bias ± 95 % LoA was − 0.3 ± 0.9 km/h for V PFO and − 2±8%ofVO 2peak for Fat peak. Conclusion: In summary, relative and absolute reliability indicators for V PFO and Fat peak were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 423 KW - peak fat oxidation KW - reliability KW - variability KW - running KW - treadmill ergometry Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407334 IS - 423 ER - TY - JOUR A1 - Cassel, Michael A1 - Carlsohn, Anja A1 - Fröhlich, Katja A1 - John, Mareike A1 - Riegels, N. A1 - Mayer, Frank T1 - Tendon Adaptation to Sport-specific Loading in Adolescent Athletes JF - International journal of sports medicine N2 - Tendon adaptation due to mechanical loading is controversially discussed. However, data concerning the development of tendon thickness in adolescent athletes is sparse. The purpose of this study was to examine possible differences in Achilles (AT) and patellar tendon (PT) thickness in adolescent athletes while considering age, gender and sport-specific loading. In 500 adolescent competitive athletes of 16 different sports and 40 recreational controls both ATs and PTs were sonographically measured. Subjects were divided into 2 age groups (< 13; ≥ 13 years) and 6 sport type categories (ball, combat, and water sports, combined disciplines, cycling, controls). In addition, 3 risk groups (low, moderate, high) were created according to the athlete’s risk of developing tendinopathy. AT and PT thickness did not significantly differ between age groups (AT/PT:<13: 5.4±0.7 mm/3.6±0.5 mm;≥13: 5.3±0.7 mm/3.6±0.5 mm). In both age groups males presented higher tendon thickness than females (p<0.001). AT thickness was highest in ball sports/cyclists and lowest in controls (p≤0.002). PT thickness was greatest in water sports and lowest in controls (p=0.02). High risk athletes presented slightly higher AT thickness compared to the low risk group (p=0.03). Increased AT and PT thickness in certain sport types compared to controls supports the hypothesis of structural tendon adaptation due to sport-specific loading. KW - achilles and patellar tendon KW - training adaptation KW - tendon thickness KW - standard values KW - sonography Y1 - 2016 U6 - https://doi.org/10.1055/s-0035-1559772 SN - 0172-4622 SN - 1439-3964 VL - 37 SP - 159 EP - 164 PB - Thieme CY - Stuttgart ER -