TY - JOUR A1 - Ziegler, Moritz O. A1 - Rajabi, Mojtaba A1 - Heidbach, Oliver A1 - Hersir, Gylfi Pall A1 - Agustsson, Kristjan A1 - Arnadottir, Sigurveig A1 - Zang, Arno T1 - The stress pattern of Iceland JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Iceland is located on the Mid-Atlantic Ridge which is the plate boundary between the Eurasian and the North American plates. It is one of the few places on earth where an active spreading centre is located onshore but the stress pattern has not been extensively investigated so far. In this paper we present a comprehensive compilation of the orientation of maximum horizontal stress (S-Hmax). In particular we interpret borehole breakouts and drilling induced fractures from borehole image logs in 57 geothermal wells onshore Iceland. The borehole results are combined with other stress indicators including earthquake focal mechanism solutions, geological information and overcoring measurements resulting in a dataset with 495 data records for the S-Hmax orientation. The reliability of each indicator is assessed according to the quality criteria of the World Stress Map project The majority of S-Hmax orientation data records in Iceland is derived from earthquake focal mechanism solutions (35%) and geological fault slip inversions (26%). 20% of the data are borehole related stress indicators. In addition minor shares of S-Hmax orientations are compiled, amongst others, from focal mechanism inversions and the alignment of fissure eruptions. The results show that the S-Hmax orientations derived from different depths and stress indicators are consistent with each other. The resulting pattern of the present-day stress in Iceland has four distinct subsets of S-Hmax orientations. The S-Hmax orientation is parallel to the rift axes in the vicinity of the active spreading regions. It changes from NE-SW in the South to approximately N-S in central Iceland and NNW-SSE in the North. In the Westfjords which is located far away from the ridge the regional S-Hmax rotates and is parallel to the plate motion. (C) 2016 Elsevier B.V. All rights reserved. KW - Iceland KW - Stress field KW - Stress pattern KW - Borehole image logs Y1 - 2016 U6 - https://doi.org/10.1016/j.tecto.2016.02.008 SN - 0040-1951 SN - 1879-3266 VL - 674 SP - 101 EP - 113 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rajabi, Mojtaba A1 - Ziegler, Moritz O. A1 - Tingay, Mark A1 - Heidbach, Oliver A1 - Reynolds, Scott T1 - Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand JF - Journal of geophysical research : Solid earth N2 - The present-day stress state is a key parameter in numerous geoscientific research fields including geodynamics, seismic hazard assessment, and geomechanics of georeservoirs. The Taranaki Basin of New Zealand is located on the Australian Plate and forms the western boundary of tectonic deformation due to Pacific Plate subduction along the Hikurangi margin. This paper presents the first comprehensive wellbore-derived basin-scale in situ stress analysis in New Zealand. We analyze borehole image and oriented caliper data from 129 petroleum wells in the Taranaki Basin to interpret the shape of boreholes and determine the orientation of maximum horizontal stress (S-Hmax). We combine these data (151 S-Hmax data records) with 40 stress data records derived from individual earthquake focal mechanism solutions, 6 from stress inversions of focal mechanisms, and 1 data record using the average of several focal mechanism solutions. The resulting data set has 198 data records for the Taranaki Basin and suggests a regional S-Hmax orientation of N068 degrees E (22 degrees), which is in agreement with NW-SE extension suggested by geological data. Furthermore, this ENE-WSW average S-Hmax orientation is subparallel to the subduction trench and strike of the subducting slab (N50 degrees E) beneath the central western North Island. Hence, we suggest that the slab geometry and the associated forces due to slab rollback are the key control of crustal stress in the Taranaki Basin. In addition, we find stress perturbations with depth in the vicinity of faults in some of the studied wells, which highlight the impact of local stress sources on the present-day stress rotation. KW - in situ stress KW - Taranaki Basin KW - New Zealand KW - plate tectonics KW - subduction zone Y1 - 2016 U6 - https://doi.org/10.1002/2016JB013178 SN - 2169-9313 SN - 2169-9356 VL - 121 SP - 6053 EP - 6070 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ziegler, Moritz O. A1 - Heidbach, Oliver A1 - Reinecker, John A1 - Przybycin, Anna M. A1 - Scheck-Wenderoth, Magdalena T1 - A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin JF - Solid earth Y1 - 2016 U6 - https://doi.org/10.5194/se-7-1365-2016 SN - 1869-9510 SN - 1869-9529 VL - 7 SP - 1365 EP - 1382 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Ziegler, Moritz O. A1 - Heidbach, Oliver A1 - Reinecker, John A1 - Przybycin, Anna M. A1 - Scheck-Wenderoth, Magdalena T1 - A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing S-Hmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases in model reliability can only be achieved using more high-quality data for calibration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 556 KW - in-situ stress KW - induced seismicity KW - geothermal-reservoirs KW - geomechanical model KW - fault reactivation KW - alpine foreland KW - map project KW - km depth KW - orientation KW - system Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409806 SN - 1866-8372 IS - 556 ER -