TY - JOUR A1 - Margold, Martin A1 - Jansen, John D. A1 - Gurinov, Artem L. A1 - Codilean, Alexandru T. A1 - Fink, David A1 - Preusser, Frank A1 - Reznichenko, Natalya V. A1 - Mifsud, Charles T1 - Extensive glaciation in Transbaikalia, Siberia, at the Last Glacial Maximum JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Successively smaller glacial extents have been proposed for continental Eurasia during the stadials of the last glacial period leading up to the Last Glacial Maximum (LGM). At the same time the large mountainous region east of Lake Baikal, Transbaikalia, has remained unexplored in terms of glacial chronology despite clear geomorphological evidence of substantial past glaciations. We have applied cosmogenic Be-10 exposure dating and optically stimulated luminescence to establish the first quantitative glacial chronology for this region. Based on eighteen exposure ages from five moraine complexes, we propose that large mountain ice fields existed in the Kodar and Udokan mountains during Oxygen Isotope Stage 2, commensurate with the global LGM. These ice fields fed valley glaciers (>100 km in length) reaching down to the Chara Depression between the Kodar and Udokan mountains and to the valley of the Vitim River northwest of the Kodar Mountains. Two of the investigated moraines date to the Late Glacial, but indications of incomplete exposure among some of the sampled boulders obscure the specific details of the post-LGM glacial history. In addition to the LGM ice fields in the highest mountains of Transbaikalia, we report geomorphological evidence of a much more extensive, ice-cap type glaciation at a time that is yet to be firmly resolved. (C) 2015 Elsevier Ltd. All rights reserved. KW - Glaciation KW - Transbaikalia KW - Last Glacial Maximum KW - Cosmogenic Be-10 exposure dating KW - Optically stimulated luminescence Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2015.11.018 SN - 0277-3791 VL - 132 SP - 161 EP - 174 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Stroeven, Arjen P. A1 - Hättestrand, Clas A1 - Kleman, Johan A1 - Heyman, Jakob A1 - Fabel, Derek A1 - Fredin, Ola A1 - Goodfellow, Bradley W. A1 - Harbor, Jonathan M. A1 - Jansen, John D. A1 - Olsen, Lars A1 - Caffee, Marc W. A1 - Fink, David A1 - Lundqvist, Jan A1 - Rosqvist, Gunhild C. A1 - Stromberg, Bo A1 - Jansson, Krister N. T1 - Deglaciation of Fennoscandia JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models. (C) 2015 The Authors. Published by Elsevier Ltd. KW - Fennoscandian Ice Sheet KW - Deglaciation KW - Glacial geomorphology KW - Geochronology KW - Ice sheet dynamics Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2015.09.016 SN - 0277-3791 VL - 147 SP - 91 EP - 121 PB - Elsevier CY - Oxford ER -