TY - JOUR A1 - Kottmeier, Christoph A1 - Agnon, Amotz A1 - Al-Halbouni, Djamil A1 - Alpert, Pinhas A1 - Corsmeier, Ulrich A1 - Dahm, Torsten A1 - Eshel, Adam A1 - Geyer, Stefan A1 - Haas, Michael A1 - Holohan, Eoghan A1 - Kalthoff, Norbert A1 - Kishcha, Pavel A1 - Krawczyk, Charlotte A1 - Lati, Joseph A1 - Laronne, Jonathan B. A1 - Lott, Friederike A1 - Mallast, Ulf A1 - Merz, Ralf A1 - Metzger, Jutta A1 - Mohsen, Ayman A1 - Morin, Efrat A1 - Nied, Manuela A1 - Roediger, Tino A1 - Salameh, Elias A1 - Sawarieh, Ali A1 - Shannak, Benbella A1 - Siebert, Christian A1 - Weber, Michael T1 - New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, similar to 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments. (C) 2015 The Authors. Published by Elsevier B.V. KW - Climate KW - Water balance KW - Flash floods KW - Seismicity KW - Sinkholes KW - Education Y1 - 2016 U6 - https://doi.org/10.1016/j.scitotenv.2015.12.003 SN - 0048-9697 SN - 1879-1026 VL - 544 SP - 1045 EP - 1058 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Neugebauer, Ina A1 - Schwab, M. J. A1 - Waldmann, Nicolas D. A1 - Tjallingii, Rik A1 - Frank, U. A1 - Hadzhiivanova, E. A1 - Naumann, R. A1 - Taha, N. A1 - Agnon, Amotz A1 - Enzel, Y. A1 - Brauer, Achim T1 - Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 549 KW - Lake Lisan KW - Middle-east KW - ice-sheet KW - hydrological condition KW - climate variability KW - tropical plumes KW - Winter rainfall KW - Southern Levant KW - soreq cave KW - Near-east Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411879 SN - 1866-8372 IS - 549 ER -