TY - JOUR A1 - Bartholomäus, Alexander A1 - Fedyunin, Ivan A1 - Feist, Peter A1 - Sin, Celine A1 - Zhang, Gong A1 - Valleriani, Angelo A1 - Ignatova, Zoya T1 - Bacteria differently regulate mRNA abundance to specifically respond to various stresses JF - Geology N2 - Environmental stress is detrimental to cell viability and requires an adequate reprogramming of cellular activities to maximize cell survival. We present a global analysis of the response of Escherichia coli to acute heat and osmotic stress. We combine deep sequencing of total mRNA and ribosome-protected fragments to provide a genome-wide map of the stress response at transcriptional and translational levels. For each type of stress, we observe a unique subset of genes that shape the stress-specific response. Upon temperature upshift, mRNAs with reduced folding stability up-and downstream of the start codon, and thus with more accessible initiation regions, are translationally favoured. Conversely, osmotic upshift causes a global reduction of highly translated transcripts with high copy numbers, allowing reallocation of translation resources to not degraded and newly synthesized mRNAs. KW - transcription KW - translation KW - deep sequencing KW - Escherichia coli KW - copy numbers Y1 - 2016 U6 - https://doi.org/10.1098/rsta.2015.0069 SN - 1364-503X SN - 1471-2962 VL - 374 PB - Royal Society CY - London ER -