TY - JOUR A1 - Nabhan, Sami A1 - Luber, Tim A1 - Scheffler, Franziska A1 - Heubeck, Christoph T1 - Climatic and geochemical implications of Archean pedogenic gypsum in the Moodies Group (similar to 3.2 Ga), Barberton Greenstone Belt, South Africa JF - Precambrian research N2 - Lithic sandstones of braided-fluvial to supratidal facies in the Paleoarchean Moodies Group (similar to 3.22 Ga, Barberton Greenstone Belt, South Africa) include several regionally traceable units with common to abundant, in places rock-forming, nodular concretions of megaquartz pseudomorphs after gypsum, barite and calcite. Concretionary accumulations are stratiform and commonly associated with aqueously reworked, fine-grained, tuffaceous sediment of originally rhyodacitic composition and can grow to fist sized agglomerates in crusts tens of m in lateral extent. Weathering of tuffaceous material and feldspar delivered alkali cations such as Ca, Ba, and K, while carbonates were likely supplied by silicate weathering of mafic to ultramafic volcanic rocks during exposure to a CO2-rich atmosphere. Sulfate ions were partly delivered by oxidative pyrite dissolution which may have included microbial and abiotic disproportionation of volcanic S or SO2. Concretionary growth apparently took place under pedogenic to early diagenetic conditions within unconsolidated granular sediment in the vadose zone, dominated by seasonal fluctuations of the groundwater level under evaporitic conditions. The concretions likely represent the oldest terrestrial evaporites known to date and form part of the oldest known compound paleosols. Their formation and composition constrain the local occurrence of sulfate in the Archean atmo- and hydrosphere, their interaction with the emerging biosphere, Archean weathering regime, local climate, and vadose-zone hydrodynamics. (C) 2016 Elsevier B.V. All rights reserved. KW - Barberton Greenstone Belt KW - Archean KW - Moodies Group KW - Evaporites KW - Sulfate KW - Paleosol Y1 - 2016 U6 - https://doi.org/10.1016/j.precamres.2016.01.011 SN - 0301-9268 SN - 1872-7433 VL - 275 SP - 119 EP - 134 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scheffler, Franziska A1 - Oberhänsli, Roland A1 - Pourteau, Amaury A1 - Immenhauser, A. A1 - Candan, O. T1 - Sedimentologic to metamorphic processes recorded in the high-pressure/low-temperature Mesozoic Rosetta Marble of Anatolia JF - International journal of earth sciences N2 - Anatolia’s high-pressure metamorphic belts are characterized in part by a Neotethyan stratigraphic succession that includes a mid-Cretaceous hemi-pelagic marble sequence. This unit contains, towards its stratigraphic top, dm-to-m-long radiating calcitic rods forming rosette-like textures. Here, we refer to these features as “Rosetta Marble”. The remarkable textural similarity of non-metamorphic selenite crystals and radiating calcite rods in the Rosetta Marble strongly suggests that these textures represent pseudomorphs after selenites. Metamorphosed hemi-pelagic limestones, dominated by Rosetta selenite pseudomorphs, are alternating with siliceous meta-sediments containing relictic radiolaria tests. This stratigraphic pattern is indicative of transient phases characterized by evaporites precipitated from basinal brines alternating with non-evaporative hemi-pelagic deposition from normal-marine seawater. The regional distribution of Rosetta Marble exposures over 600 km is indicative of basin-scale evaporitic intervals. High-pressure, low-temperature metamorphism of these rocks is witnessed by Sr-rich (up to 3500 ppm), fibrous calcite pseudomorphs after aragonite and isolated aragonite inclusions in quartz. Peak metamorphic conditions of 1.2 GPa and 300–350 °C are attested by high-Si white mica thermobarometry. The Rosetta Marble case example examines the potential to unravel the complete history from deposition to diagenesis and metamorphism of meta-sedimentary rocks. KW - Gypsum KW - High-pressure metamorphism KW - Neotethys KW - Anatolia Y1 - 2016 U6 - https://doi.org/10.1007/s00531-015-1214-y SN - 1437-3254 SN - 1437-3262 VL - 105 SP - 225 EP - 246 PB - Springer CY - New York ER -