TY - JOUR A1 - Sahle, Fitsum Feleke A1 - Balzus, Benjamin A1 - Gerecke, Christian A1 - Kleuser, Burkhard A1 - Bodmeier, Roland T1 - Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential JF - European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS N2 - pH-sensitive nanoparticles which release in a controlled fashion on the skin or dissolve in the hair follicle could significantly improve treatment effectiveness and make transfollicular drug delivery a success. Dexamethasone-loaded Eudragit L 100 nanoparticles were prepared by nanoprecipitation from an organic drug-polymer solution. Their toxicity potential was assessed using isolated human fibroblasts. pH-dependent swelling and erosion kinetics of the nanoparticles were investigated by dynamic light scattering and viscosity measurements and its effect on drug release was assessed in vitro with Franz diffusion cells. Stable, 100-550 nm-sized dexamethasone-loaded Eudragit L 100 nanoparticles with drug loading capacity and entrapment efficiency as high as 83% and 85%, respectively, were obtained by using polyvinyl alcohol as a stabilizer and ethanol as organic solvent The nanoparticles showed little or no toxicity on isolated normal human fibroblasts. Dexamethasone existed in the nanoparticles as solid solution or in amorphous form. The nanoparticles underwent extensive swelling and slow drug release in media with a low buffer capacity (as low as 10 mM) and a higher pH or at a pH close to the dissolution pH of the polymer (pH 6) and a higher buffer capacity. In 40 mM buffer and above pH 6.8, the nanoparticles eroded fast or dissolved completely and thus released the drug rapidly. pH-sensitive nanoparticles which potentially release in a controlled manner on the stratum corneum but dissolve in the hair follicle could be prepared. (C) 2016 Elsevier B.V. All rights reserved. KW - Dexamethasone KW - Enteric polymer KW - Eudragit L 100 KW - pH-sensitive nanoparticles KW - Skin nanocarrier KW - Erosion kinetics Y1 - 2016 U6 - https://doi.org/10.1016/j.ejps.2016.07.004 SN - 0928-0987 SN - 1879-0720 VL - 92 SP - 98 EP - 109 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Doege, N. A1 - Hoenzke, S. A1 - Schumacher, Fabian A1 - Balzus, Benjamin A1 - Colombo, Miriam A1 - Hadam, S. A1 - Rancan, F. A1 - Blume-Peytavi, Ulrike A1 - Schindler, A. A1 - Ruehl, E. A1 - Skov, P. A1 - Church, Martin K. A1 - Hedtrich, Sarah A1 - Kleuser, Burkhard A1 - Bodmeier, Roland A1 - Vogt, A. T1 - Ex vivo microdialysis used for the preclinical assessment of anti-inflammatory therapy T2 - Experimental dermatology : the official journal of the European Immunodermatology Society Y1 - 2016 SN - 0906-6705 SN - 1600-0625 VL - 25 SP - E32 EP - E32 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Döge, Nadine A1 - Hönzke, Stefan A1 - Schumacher, Fabian A1 - Balzus, Benjamin A1 - Colombo, Miriam A1 - Hadam, Sabrina A1 - Rancan, Fiorenza A1 - Blume-Peytavi, Ulrike A1 - Schäfer-Korting, Monika A1 - Schindler, Anke A1 - Rühl, Eckart A1 - Skov, Per Stahl A1 - Church, Martin K. A1 - Hedtrich, Sarah A1 - Kleuser, Burkhard A1 - Bodmeier, Roland A1 - Vogt, Annika T1 - Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers JF - Journal of controlled release N2 - Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-termex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24 h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24 h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6 h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45 kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin. (C) 2016 Elsevier B.V. All rights reserved. KW - Drug delivery systems KW - Polymeric nanoparticles KW - Dexamethasone KW - Microdialysis KW - Skin penetration KW - Skin barrier disruption Y1 - 2016 U6 - https://doi.org/10.1016/j.jconrel.2016.07.009 SN - 0168-3659 SN - 1873-4995 VL - 242 SP - 25 EP - 34 PB - Elsevier CY - Amsterdam ER -