TY - JOUR A1 - Reil, Daniela A1 - Imholt, Christian A1 - Drewes, Stephan A1 - Ulrich, Rainer Günter A1 - Eccard, Jana A1 - Jacob, Jens T1 - Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany? JF - Zoonoses and Public Health N2 - Bank voles can harbour Puumala virus (PUUV) and vole populations usually peak in years after beech mast. A beech mast occurred in 2014 and a predictive model indicates high vole abundance in 2015. This pattern is similar to the years 2009/2011 when beech mast occurred, bank voles multiplied and human PUUV infections increased a year later. Given similar environmental conditions in 2014/2015, increased risk of human PUUV infections in 2015 is likely. Risk management measures are recommended. KW - Beech fructification KW - Puumala virus KW - bank vole KW - outbreak KW - nephropathia epidemica KW - Germany Y1 - 2016 U6 - https://doi.org/10.1111/zph.12217 SN - 1863-1959 SN - 1863-2378 VL - 63 SP - 83 EP - 88 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schmidt, Sabrina A1 - Saxenhofer, Moritz A1 - Drewes, Stephan A1 - Schlegel, Mathias A1 - Wanka, Konrad M. A1 - Frank, Raphael A1 - Klimpel, Sven A1 - von Blanckenhagen, Felix A1 - Maaz, Denny A1 - Herden, Christiane A1 - Freise, Jona A1 - Wolf, Ronny A1 - Stubbe, Michael A1 - Borkenhagen, Peter A1 - Ansorge, Hermann A1 - Eccard, Jana A1 - Lang, Johannes A1 - Jourdain, Elsa A1 - Jacob, Jens A1 - Marianneau, Philippe A1 - Heckel, Gerald A1 - Ulrich, Rainer Günter T1 - High genetic structuring of Tula hantavirus JF - Archives of virology N2 - Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 %) was higher than that in field voles (9.2 %) and water voles (10.0 %). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas. Y1 - 2016 U6 - https://doi.org/10.1007/s00705-016-2762-6 SN - 0304-8608 SN - 1432-8798 VL - 161 SP - 1135 EP - 1149 PB - Springer CY - Wien ER -