TY - JOUR A1 - Ramisch, Arne A1 - Lockot, Gregori A1 - Haberzettl, Torsten A1 - Hartmann, Kai A1 - Kuhn, Gerhard A1 - Lehmkuhl, Frank A1 - Schimpf, Stefan A1 - Schulte, Philipp A1 - Stauch, Georg A1 - Wang, Rong A1 - Wunnemann, Bernd A1 - Yan, Dada A1 - Zhang, Yongzhan A1 - Diekmann, Bernhard T1 - A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene JF - Scientific reports N2 - Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [similar to 36 degrees N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions. Y1 - 2016 U6 - https://doi.org/10.1038/srep25791 SN - 2045-2322 VL - 6 SP - 596 EP - 633 PB - Nature Publ. Group CY - London ER -