TY - THES A1 - Konrad-Schmolke, Matthias T1 - Thermodynamic and geochemical modeling in metamorphic geology T1 - Thermodynamische und geochemische Modellierungen in metamorpher Geologie N2 - Quantitative thermodynamic and geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to the oceanic realm. Thermodynamic calculations are used, for example, to get better insight into lithosphere dynamics, to constrain melting processes in crust and mantle as well as to study fluid-rock interaction. The development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams have greatly advanced our ability to model geodynamic processes from subduction to orogenesis. However, a well-known problem is that despite its broad application the use and interpretation of thermodynamic models applied to natural rocks is far from straightforward. For example, chemical disequilibrium and/or unknown rock properties, such as fluid activities, complicate the application of equilibrium thermodynamics. One major aspect of the publications presented in this Habilitationsschrift are new approaches to unravel dynamic and chemical histories of rocks that include applications to chemically open system behaviour. This approach is especially important in rocks that are affected by element fractionation due to fractional crystallisation and fluid loss during dehydration reactions. Furthermore, chemically open system behaviour has also to be considered for studying fluid-rock interaction processes and for extracting information from compositionally zoned metamorphic minerals. In this Habilitationsschrift several publications are presented where I incorporate such open system behaviour in the forward models by incrementing the calculations and considering changing reacting rock compositions during metamorphism. I apply thermodynamic forward modelling incorporating the effects of element fractionation in a variety of geodynamic and geochemical applications in order to better understand lithosphere dynamics and mass transfer in solid rocks. In three of the presented publications I combine thermodynamic forward models with trace element calculations in order to enlarge the application of geochemical numerical forward modeling. In these publications a combination of thermodynamic and trace element forward modeling is used to study and quantify processes in metamorphic petrology at spatial scales from µm to km. In the thermodynamic forward models I utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. One of the included publications shows that trace element growth zonations in metamorphic garnet porphyroblasts can be used to get crucial information about the reaction path of the investigated sample. In order to interpret the major and trace element distribution and zoning patterns in terms of the reaction history of the samples, we combined thermodynamic forward models with mass-balance rare earth element calculations. Such combined thermodynamic and mass-balance calculations of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. We can show in that paper that garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction and that the rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions. In two of the presented publications I illustrate the capacities of combined thermodynamic-geochemical modeling based on examples relevant to mass transfer in subduction zones. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab and associated transport of B and variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. I show that, combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In my publications presented in this Habilitationsschrift I compare the modeled results to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable so far. Thus, the contributions to the science community presented in this Habilitatonsschrift concern the fields of petrology, geochemistry, geochronology but also ore geology that all use thermodynamic and geochemical models to solve various problems related to geo-materials. N2 - Große Teile des Planeten auf dem wir leben sind für direkte Beobachtungen unzugänglich. Dieser Umstand umfasst nicht nur eine räumliche Komponente, so wie dies z.B. in den Tiefseegräben der Ozeane oder im Erdinneren der Fall ist sondern auch eine zeitliche Komponente, da viele für uns lebenswichtigen Prozesse, wie z.B. die Verschiebung der Kontinentalplatten, in für uns kaum beobachtbaren Raten stattfinden. Daher sind sogenannte Proxies, d.h. Archive in denen Informationen über die untersuchten Prozesse aus der längeren Vergangenheit gespeichert sind für die Geowissenschaften von sehr großer Bedeutung. Der wohl bekannteste Proxy ist zur Zeit CO2, dessen Konzentration in der Atmosphäre mit der Lufttemperatur korreliert wird. Als Archive für diesen Proxy dienen in der Regel Luftblasen in den Schichten der Eisschilde. Ist der Prozess bekannt, der den Proxy mit der gesuchten Information verbindet, im Falle von CO2 ist das der weitgehend bekannte sogenannte Treibhaus-Effekt, der die Oberflächentemperatur auf der Erde kontrolliert, kann man aus den Daten der Vergangenheit auf die Zukunft rückschließen. Wichtig ist dabei natürlich, dass der Prozess, der den Proxy kontrolliert genau bekannt ist, denn sonst führen dessen Messungen und die Interpretation der Daten zu falschen Rückschlüssen. In der von mir vorgelegten Habilitationsschrift geht es um Prozesse, die bestimmte Proxies in Gesteinen kontrollieren und darum, aus den Messungen der Proxies Rückschlüsse über Prozesse machen zu können, die weit außerhalb unseres direkt beobachtbaren Raumes liegen. Bei den untersuchten Prozessen handelt es sich um die sogenannte Lithosphärendynamik, die Bewegung der Gesteine in den obersten etwa 100km unseres Planeten. Diese Dynamik und die damit verbundenen Massenbewegungen sind weder räumlich noch zeitlich gut zu beobachten, die Prozesse laufen meist in größeren Tiefen und im Maßstab von Millionen von Jahren ab, sind aber dennoch für die Menschen von größter Bedeutung, da sie für Erdbeben, Vulkanausbrüche aber auch für die Lagerstättenbildung verantwortlich sind. Bewegungen der Gesteine in der Lithosphäre gehen mit Druck- und Temperaturänderungen in den Gesteinen einher. Die Gesteine versuchen sich diesen Änderungen anzupassen, was durch chemische Veränderungen in den Mineralen aus denen die Gesteine bestehen, geschieht. Solche Veränderungen infolge der Anpassung an sich ändernde Umweltbedingungen sind uns allen bekannt: Eis schmilzt, wenn die Umgebungstemperatur über dem Gefrierpunkt liegt und die Kraft, die wir im Verbrennungsmotor aus der chemischen Reaktion zwischen Benzin und Luft gewinnen setzen wir in Bewegung um. Die Berechnung solcher chemischer Anpassungen an sich ändernde Umgebungsbedingungen erfolgt mit Hilfe der Thermodynamik. Mit thermodynamischen Modellen können wir voraussagen welche Veränderungen in einem chemischen System auftreten, wenn sich die Umgebungsbedingungen ändern. Im Bezug auf Gesteine bedeutet dies, dass wir die chemische Zusammensetzung der Minerale bei bestimmten Druck und Temperaturbedingungen voraussagen können und umgekehrt auch aus der chemischen Zusammensetzung der Minerale auf die Druck- und Temperaturbedingungen bei ihrer Entstehung rückschließen können. Einige Minerale, wie z.B. Granat oder Feldspat weisen in Gesteinen oft eine chemische Zonierung auf, d.h. wie die Jahresringe in einem Baum haben solche Minerale konzentrische Anwachssäume, die sich in ihrer chemischen Zusammensetzung unterscheiden und so ein Archiv über die erfahrenen Druck- und Temperaturveränderungen in der Geschichte des Gesteins darstellen. Zur Interpretation dieser Zonierungen bedarf es komplexer thermodynamischer Modellierungen mit denen ich mich in den hier zusammengefassten publizierten Arbeiten beschäftigt habe. In den in dieser Habilitationsschrift zusammengefassten Arbeiten arbeite ich vor allem heraus, dass sowohl die Haupt- als auch die Spurenelementzonierungen in den Mineralen Granat und Hellglimmer hervorragende Indikatoren für Elementtransportprozesse in den Gesteinen sind. In Granat können Haupt- und Seltenerdelementzonierungen herangezogen werden um Elementfraktionierungsprozesse während der Gesteinsentwicklung zu detektieren. In den Hellglimmern ist die Konzentration und isotopische Zusammensetzung von Bor indikativ für eine Fluid-Gesteins-Wechselwirkung. Ich zeige, dass mit von mir und meinen Co-Autoren entwickelten thermodynamisch-geochemischen Modellen solche Elementtransportprozesse quantifiziert werden können. In den hier vorgelegten Arbeiten verwende ich solche numerischen Modelle um Prozesse vom µm bis km Maßstab zu quantifizieren. KW - geology KW - petrology KW - thermodynamic modelling KW - Geologie KW - Petrologie KW - thermodynamische Modellierungen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101805 ER - TY - THES A1 - Olen, Stephanie M. T1 - Understanding Himalayan denudation at the catchment and orogen scale T1 - Verständnis von Denudation auf regionalem und orogenem Maßstab im Himalaja N2 - Understanding the rates and processes of denudation is key to unraveling the dynamic processes that shape active orogens. This includes decoding the roles of tectonic and climate-driven processes in the long-term evolution of high- mountain landscapes in regions with pronounced tectonic activity and steep climatic and surface-process gradients. Well-constrained denudation rates can be used to address a wide range of geologic problems. In steady-state landscapes, denudation rates are argued to be proportional to tectonic or isostatic uplift rates and provide valuable insight into the tectonic regimes underlying surface denudation. The use of denudation rates based on terrestrial cosmogenic nuclide (TCN) such as 10Beryllium has become a widely-used method to quantify catchment-mean denudation rates. Because such measurements are averaged over timescales of 102 to 105 years, they are not as susceptible to stochastic changes as shorter-term denudation rate estimates (e.g., from suspended sediment measurements) and are therefore considered more reliable for a comparison to long-term processes that operate on geologic timescales. However, the impact of various climatic, biotic, and surface processes on 10Be concentrations and the resultant denudation rates remains unclear and is subject to ongoing discussion. In this thesis, I explore the interaction of climate, the biosphere, topography, and geology in forcing and modulating denudation rates on catchment to orogen scales. There are many processes in highly dynamic active orogens that may effect 10Be concentrations in modern river sands and therefore impact 10Be-derived denudation rates. The calculation of denudation rates from 10Be concentrations, however, requires a suite of simplifying assumptions that may not be valid or applicable in many orogens. I investigate how these processes affect 10Be concentrations in the Arun Valley of Eastern Nepal using 34 new 10Be measurements from the main stem Arun River and its tributaries. The Arun Valley is characterized by steep gradients in climate and topography, with elevations ranging from <100 m asl in the foreland basin to >8,000 asl in the high sectors to the north. This is coupled with a five-fold increase in mean annual rainfall across strike of the orogen. Denudation rates from tributary samples increase toward the core of the orogen, from <0.2 to >5 mm/yr from the Lesser to Higher Himalaya. Very high denudation rates (>2 mm/yr), however, are likely the result of 10Be TCN dilution by surface and climatic processes, such as large landsliding and glaciation, and thus may not be representative of long-term denudation rates. Mainstem Arun denudation rates increase downstream from ~0.2 mm/yr at the border with Tibet to 0.91 mm/yr at its outlet into the Sapt Kosi. However, the downstream 10Be concentrations may not be representative of the entire upstream catchment. Instead, I document evidence for downstream fining of grains from the Tibetan Plateau, resulting in an order-of-magnitude apparent decrease in the measured 10Be concentration. In the Arun Valley and across the Himalaya, topography, climate, and vegetation are strongly interrelated. The observed increase in denudation rates at the transition from the Lesser to Higher Himalaya corresponds to abrupt increases in elevation, hillslope gradient, and mean annual rainfall. Thus, across strike (N-S), it is difficult to decipher the potential impacts of climate and vegetation cover on denudation rates. To further evaluate these relationships I instead took advantage of an along-strike west-to-east increase of mean annual rainfall and vegetation density in the Himalaya. An analysis of 136 published 10Be denudation rates from along strike of the revealed that median denudation rates do not vary considerably along strike of the Himalaya, ~1500 km E-W. However, the range of denudation rates generally decreases from west to east, with more variable denudation rates in the northwestern regions of the orogen than in the eastern regions. This denudation rate variability decreases as vegetation density increases (R=- 0.90), and increases proportionately to the annual seasonality of vegetation (R=0.99). Moreover, rainfall and vegetation modulate the relationship between topographic steepness and denudation rates such that in the wet, densely vegetated regions of the Himalaya, topography responds more linearly to changes in denudation rates than in dry, sparsely vegetated regions, where the response of topographic steepness to denudation rates is highly nonlinear. Understanding the relationships between denudation rates, topography, and climate is also critical for interpreting sedimentary archives. However, there is a lack of understanding of how terrestrial organic matter is transported out of orogens and into sedimentary archives. Plant wax lipid biomarkers derived from terrestrial and marine sedimentary records are commonly used as paleo- hydrologic proxy to help elucidate these problems. I address the issue of how to interpret the biomarker record by using the plant wax isotopic composition of modern suspended and riverbank organic matter to identify and quantify organic matter source regions in the Arun Valley. Topographic and geomorphic analysis, provided by the 10Be catchment-mean denudation rates, reveals that a combination of topographic steepness (as a proxy for denudation) and vegetation density is required to capture organic matter sourcing in the Arun River. My studies highlight the importance of a rigorous and careful interpretation of denudation rates in tectonically active orogens that are furthermore characterized by strong climatic and biotic gradients. Unambiguous information about these issues is critical for correctly decoding and interpreting the possible tectonic and climatic forces that drive erosion and denudation, and the manifestation of the erosion products in sedimentary archives. N2 - Schlüssel im Verständnis der dynamischen Prozesse in aktiven Orogenen ist die Kenntnis der Abtragungsraten und -prozesse. Eine breite Auswahl geologischer Fragen können mit well-constrained Abtragungsraten erörtert werden. Sind Landschaften im Gleichgewicht so sind die Denudationsraten proportional zu den tektonischen und isostatischen Hebungsraten und geben somit wichtige Hinweise über die tektonischen Eigenschaften der Region. Eine weit verbreitete und etablierte Methode zur Bestimmung mittlerer Denudationsraten eines bestimmten Einzugsgebietes ist Beryllium-10, ein terrestrisches kosmogenes Nuklid (10Be TCN). 10Be TCN Messungen stellen durchschnittliche Abtragungsraten über einen Zeitraum von 10^2 – 10^5 Jahren dar und sind daher weniger verletzlich gegenüber stochastischen Änderungen wie Erosionsraten, die über einen kurzen Zeitraum ermittelt werden z.B. in Suspension. Sie sind daher zuverlässig einsetzbar um langfristige Prozesse zu vergleichen. Allerdings ist unklar welche Einfluss verschiedene klimatische, biologische oder erdoberflächen Prozesse auf die 10Be Konzentration ausüben und somit auch auf die resultierenden Abtragungsraten. In dieser Doktorarbeit, setze ich mich mit dem Zwischenspiel von Klima, Biosphäre, Topographie und Geologie auseinander und dem Einfluss, den sie auf Abtragungsraten ausüben sowohl auf regionalem wie auch auf orogenem Maßstab. In hoch dynamischen aktiven Gebirgen gibt es viele Prozesse, welche die 10Be Konzentration in heutigen Flusssanden beeinflussen und damit auch die, mittels 10Be berechneten, Abtragungsraten. Um diese Raten mittels 10Be Konzentrationen zu berechnen benötigen wir einige vereinfachende Annahmen, die möglicherweise in anderen Regionen keine Gültigkeit haben. Ich untersuche den Einfluss dieser Prozesse auf die 10Be Konzentration. Dazu haben wir im Arun Tal im Osten Nepals 34 neue 10Be Konzentrationen des Arun Flusses und seinen Zuflüssen untersucht. Charakteristisch für das Arun Tal sind die steilen Gradienten im Klima mit einem fünffachen Anstieg des mittleren jährlichen Regenfalls über das Orogens, und in der Topographie mit Höhen von weniger als 100 m über Meer im Vorlandbecken bis über 8000 m über Meer im Gebirge. Die Abtragungsraten der Proben der Zuflüsse nehmen gegen das Zentrum des Gebirges von weniger <0.2 zu mehr als >5 mm/yr zu d.h. ansteigend vom Lesser zum Higher Himalaya. Sehr hohe Denudationsraten (> 2mm/yr) können durch erdoberflächen und klimatische Prozesse verwässert werden z. B. grosse Erdrutsche und Vergletscherungen, und sind daher nicht unbedingt repräsentativ für langzeitliche Abtragungsraten. Im Arun nehmen die Raten des Hauptflusses flussabwärts von 0.2 mm/yr im Bereich der Grenze zu Tibet auf 0.91 mm/yr am Ausfluss in Sapt Kosi zu. Es ist möglich, dass diese 10Be Konzentrationen nicht das vollständige flussauswärtsliegende Einzugsgebiet repräsentieren. Stattdessen lege ich dar wie sich die Korngrösse ab dem tibetischen Plateau verfeinert und dazu führt, dass die 10Be Konzentrationen offenkundig im Bereich einer Grössenordnung abnehmen. Im Arun Tal und sowie über den ganzen Himalaja sind Topographie, Klima und Vegetation sehr stark miteinander verbunden. Das Ansteigen der Denudationsraten im Übergang vom Lesser zum Higher Himalaya stimmt mit dem abrupten Ansteigen der Höhe, des Hangneigungsgradienten und des mittleren jährlichen Regenfalles überein. Es ist schwierig die möglichen Einflüssen von Klima und der Vegetationsdichte auf die Abtragungsraten über das Orogen hinweg (N-S) zu entziffern. Stattdessen, nutzen wir den Vorteil der, von West nach Ost, parallel zum Himalaja verlaufenden, Zunahme des mittleren jährlichen Regenfalles und der Vegetationsdichte. Eine Analyse 136 publizierter 10Be TCN Abtragungsraten entlang des Gebirges, zeigt dass die im Streichen liegenden mittleren Denudationsraten (ca. 1500 km Ost-West) nicht deutlich variieren. Generell sinkt die Wertebereich der Denudationsraten vom Westen gegen Osten, wobei in den nordwestlichen Regionen des Himalajas variablere Abtragungsraten vorherrschen als in den östlichen Regionen. Diese Vielfalt in den Denudationsraten sinkt mit steigender Vegetationsdichte (R=-0.90) und steigt proportional zur (jährlichen) Saisonalität der Vegetation (R=0.99). Vielmehr noch wird das Verhältnis zwischen der topographischen Steilheit und den Abtragungsraten durch Regen und Vegetation beeinflusst z. B. in feuchten Gebieten mit starker Vegetation reagiert die Topographie linearer auf Wechsel in den Abtragungsraten als in trockenen, kaum bewachsenen Regionen, wo die Reaktion der topographischen Steilheit auf die Denudationsraten äusserst nicht-linear ist. Das Verständnis der Beziehung zwischen Erosion, Topographie und Klima ist auch entscheidend für die Interpretation von Sedimentarchiven. Unser Wissen über die Repräsentativität von terrestrisches organisches Material, abgelagert in z.B. Flussdeltas, für die Einzugsgebiete der entsprechenden Flüsse, ist nach wie vor nur vage. Dennoch sind Blattwachse höherer Landpflanzen, extrahiert aus terrestrischen und marinen Sedimenten, ein häufig verwendeter paläohydrologischer Proxy. Im Rahmen dieser Arbeit nutzen wir die Isotopenzusammensetzung von Pflanzenwachsen aus Suspensionsmaterial und aus Flusssedimenten als Herkunftsmarker und zur Quantifizierung des organischen Materials im Arun Tal. Die Analyse von Vegetationsdichte und Regenverteilung in Kombination mit Abtragungsraten des Einzugsgebietes, welche durch die mittleren 10Be-Erosionsraten gestützt werden, zeigen, dass das Vorhandensein dichter Vegetation ein zwar notwendiges, aber nicht hinreichendes Kriterium für hohen OM-Export ist. Vielmehr können wir zeigen, dass nur eine Kombination aus dichter Vegetationsdecke und Erosion zu hohem OM-Export führt. Für die Interpretation entspechender Archive bedeutet das, dass sie im Wesentlichen jene Bereiche des Einzugsgebietes repräsentieren, welche durch hohe Pflanzendichte und starke Erosion charakterisiert sind. Diese Studien belegen wie wichtig es ist die Abtragungsraten in aktiven Gebirgen umfassend zu verstehen. Für die Interpretation kann dieses Verständnis der möglichen tektonischen und klimatischen Gewalten, welche Erosion und Abtragung steuern, und auch das Verständnis der Sedimentarchive aus den Gebirgen stammend, entscheidend sein. KW - geology KW - geomorphology KW - Himalaya KW - Geologie KW - Geomorphologie KW - Himalaja Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91423 ER -