TY - GEN A1 - Sas, Claudia A1 - Müller, Frank A1 - Kappel, Christian A1 - Kent, Tyler V. A1 - Wright, Stephen I. A1 - Hilker, Monika A1 - Lenhard, Michael T1 - Repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in Capsella T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3-5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6-8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9-13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14-17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella. While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella. We identify the Capsella CNL1 gene encoding cinnamate: CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate: CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 904 KW - benzyl alcohol-dehydrogenase KW - floral scent KW - recent speciation KW - petunia flowers KW - genus capsella KW - evolution KW - biosynthesis KW - fragrance KW - purification KW - pollinators KW - benzaldehyde KW - selfing syndrome KW - shepherd’s purse KW - cinnamate:CoA ligase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438018 SN - 1866-8372 IS - 904 SP - 3313 EP - 3319 ER - TY - GEN A1 - Yan, Robert A1 - Friemel, Martin A1 - Aloisi, Claudia A1 - Huynen, Martijn A1 - Taylor, Ian A. A1 - Leimkühler, Silke A1 - Pastore, Annalisa T1 - The eukaryotic-specific Isd11 is a complex- orphan protein with ability to bind the prokaryotic IscS T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The eukaryotic protein Isd11 is a chaperone that binds and stabilizes the central component of the essential metabolic pathway responsible for formation of iron-sulfur clusters in mitochondria, the desulfurase Nfs1. Little is known about the exact role of Isd11. Here, we show that human Isd11 (ISD11) is a helical protein which exists in solution as an equilibrium between monomer, dimeric and tetrameric species when in the absence of human Nfs1 (NFS1). We also show that, surprisingly, recombinant ISD11 expressed in E. coli co-purifies with the bacterial orthologue of NFS1, IscS. Binding is weak but specific suggesting that, despite the absence of Isd11 sequences in bacteria, there is enough conservation between the two desulfurases to retain a similar mode of interaction. This knowledge may inform us on the conservation of the mode of binding of Isd11 to the desulfurase. We used evolutionary evidence to suggest Isd11 residues involved in the interaction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 551 KW - sulfur cluster formation KW - Escherichia coli KW - cysteine desulfurase KW - interacting protein KW - bacterial frataxin KW - statistical-model KW - biogenesis KW - biosynthesis KW - NFS1 KW - deficiency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411906 SN - 1866-8372 IS - 551 ER -