TY - JOUR A1 - Derras, Boumediene A1 - Bard, Pierre-Yves A1 - Cotton, Fabrice Pierre T1 - Site-Condition Proxies, Ground Motion Variability, and Data-Driven GMPEs: Insights from the NGA-West2 and RESORCE Data Sets JF - Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute N2 - We compare the ability of various site-condition proxies (SCPs) to reduce the aleatory variability of ground motion prediction equations (GMPEs). Three SCPs (measured V-S30, inferred V-S30, local topographic slope) and two accelerometric databases (RESORCE and NGA-West2) are considered. An artificial neural network (ANN) approach including a random-effect procedure is used to derive GMPEs setting the relationship between peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration [PSA(T)], and explanatory variables (M-w, R-JB, and V-S30 or Slope). The analysis is performed using both discrete site classes and continuous proxy values. All "non-measured" SCPs exhibit a rather poor performance in reducing aleatory variability, compared to the better performance of measured V-S30. A new, fully data-driven GMPE based on the NGA-West2 is then derived, with an aleatory variability value depending on the quality of the SCP. It proves very consistent with previous GMPEs built on the same data set. Measuring V-S30 allows for benefit from an aleatory variability reduction up to 15%. Y1 - 2016 U6 - https://doi.org/10.1193/060215EQS082M SN - 8755-2930 SN - 1944-8201 VL - 32 SP - 2027 EP - 2056 PB - Earthquake Engineering Research Institute CY - Oakland ER -