TY - GEN A1 - Yan, Robert A1 - Friemel, Martin A1 - Aloisi, Claudia A1 - Huynen, Martijn A1 - Taylor, Ian A. A1 - Leimkühler, Silke A1 - Pastore, Annalisa T1 - The eukaryotic-specific Isd11 is a complex- orphan protein with ability to bind the prokaryotic IscS T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The eukaryotic protein Isd11 is a chaperone that binds and stabilizes the central component of the essential metabolic pathway responsible for formation of iron-sulfur clusters in mitochondria, the desulfurase Nfs1. Little is known about the exact role of Isd11. Here, we show that human Isd11 (ISD11) is a helical protein which exists in solution as an equilibrium between monomer, dimeric and tetrameric species when in the absence of human Nfs1 (NFS1). We also show that, surprisingly, recombinant ISD11 expressed in E. coli co-purifies with the bacterial orthologue of NFS1, IscS. Binding is weak but specific suggesting that, despite the absence of Isd11 sequences in bacteria, there is enough conservation between the two desulfurases to retain a similar mode of interaction. This knowledge may inform us on the conservation of the mode of binding of Isd11 to the desulfurase. We used evolutionary evidence to suggest Isd11 residues involved in the interaction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 551 KW - sulfur cluster formation KW - Escherichia coli KW - cysteine desulfurase KW - interacting protein KW - bacterial frataxin KW - statistical-model KW - biogenesis KW - biosynthesis KW - NFS1 KW - deficiency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411906 SN - 1866-8372 IS - 551 ER - TY - GEN A1 - Connor, Daniel Oliver A1 - Zantow, Jonas A1 - Hust, Michael A1 - Bier, Frank Fabian A1 - von Nickisch-Rosenegk, Markus T1 - Identification of novel immunogenic proteins of Neisseria gonorrhoeae by phage display T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 541 KW - proteomic analysis KW - vaccine antigens KW - gene-expression KW - Mycobacterium tuberculosis KW - antimicrobial resistance KW - recombinant antibodies KW - Salmonella Thyphimurium KW - untreatable Gonorrhea KW - multidrug-resistant KW - Escherichia coli Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411077 SN - 1866-8372 IS - 541 ER -