TY - JOUR A1 - Schick, Daniel A1 - Le Guyader, Loic A1 - Pontius, Niko A1 - Radu, Ilie A1 - Kachel, Torsten A1 - Mitzner, Rolf A1 - Zeschke, Thomas A1 - Schuessler-Langeheine, Christian A1 - Föhlisch, Alexander A1 - Holldack, Karsten T1 - Analysis of the halo background in femtosecond slicing experiments JF - Journal of synchrotron radiation N2 - The slicing facility FemtoSpeX at BESSY II offers unique opportunities to study photo-induced dynamics on femtosecond time scales by means of X-ray magnetic circular dichroism, resonant and non-resonant X-ray diffraction, and X-ray absorption spectroscopy experiments in the soft X-ray regime. Besides femtosecond X-ray pulses, slicing sources inherently also produce a so-called `halo' background with a different time structure, polarization and pointing. Here a detailed experimental characterization of the halo radiation is presented, and a method is demonstrated for its correct and unambiguous removal from femtosecond time-resolved data using a special laser triggering scheme as well as analytical models. Examples are given for time-resolved measurements with corresponding halo correction, and errors of the relevant physical quantities caused by either neglecting or by applying a simplified model to describe this background are estimated. KW - femtosecond slicing KW - halo KW - pump-probe KW - XMCD KW - X-ray scattering Y1 - 2016 U6 - https://doi.org/10.1107/S160057751600401X SN - 1600-5775 VL - 23 SP - 700 EP - 711 PB - International Union of Crystallography CY - Chester ER - TY - JOUR A1 - Rettig, L. A1 - Dornes, C. A1 - Thielemann-Kuehn, Nele A1 - Pontius, N. A1 - Zabel, Hartmut A1 - Schlagel, D. L. A1 - Lograsso, T. A. A1 - Chollet, M. A1 - Robert, A. A1 - Sikorski, M. A1 - Song, S. A1 - Glownia, J. M. A1 - Schuessler-Langeheine, Christian A1 - Johnson, S. L. A1 - Staub, U. T1 - Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho JF - Physical review letters N2 - Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L-3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p -> 5d) or quadrupole (E2, 2p -> 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3-tau) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f-5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevLett.116.257202 SN - 0031-9007 SN - 1079-7114 VL - 116 SP - 6382 EP - 6389 PB - American Physical Society CY - College Park ER -