TY - JOUR A1 - Cristiano, L. A1 - Meier, T. A1 - Krüger, F. A1 - Keers, H. A1 - Weidle, C. T1 - Teleseismic P-wave polarization analysis at the Grafenberg array JF - Geophysical journal international N2 - P-wave polarization at the Grafenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180A degrees A and 360A degrees. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180A degrees A periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20A degrees E with an uncertainty of about 8A degrees A and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360A degrees A periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths. KW - Body waves KW - Seismic anisotropy KW - Wave propagation Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggw339 SN - 0956-540X SN - 1365-246X VL - 207 SP - 1456 EP - 1471 PB - Oxford Univ. Press CY - Oxford ER -