TY - JOUR A1 - Bouche, Nicolas A1 - Finley, H. A1 - Schroetter, I. A1 - Murphy, M. T. A1 - Richter, Philipp A1 - Bacon, Roland A1 - Contini, Thierry A1 - Richard, J. A1 - Wendt, Martin A1 - Kamann, S. A1 - Epinat, Benoit A1 - Cantalupo, Sebastiano A1 - Straka, Lorrie A. A1 - Schaye, Joop A1 - Martin, C. L. A1 - Peroux, C. A1 - Wisotzki, Lutz A1 - Soto, K. A1 - Lilly, S. A1 - Carollo, C. M. A1 - Brinchmann, Jarle A1 - Kollatschny, W. T1 - POSSIBLE SIGNATURES OF A COLD-FLOW DISK FROM MUSE USING A z similar to 1 GALAXY-QUASAR PAIR TOWARD SDSS J1422-0001 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We use a background quasar to detect the presence of circumgalactic gas around a z = 0.91 low-mass star-forming galaxy. Data from the new Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope show that the galaxy has a dust-corrected star formation rate (SFR) of 4.7 +/- 2.0. M-circle dot yr(-1), with no companion down to 0.22 M-circle dot yr(-1) (5 sigma) within 240 h(-1) kpc ("30"). Using a high-resolution spectrum of the background quasar, which is fortuitously aligned with the galaxy major axis (with an azimuth angle alpha of only 15 degrees), we find, in the gas kinematics traced by low-ionization lines, distinct signatures consistent with those expected for a "cold-flow disk" extending at least 12 kpc (3 x R-1/2). We estimate the mass accretion rate M-in to be at least two to three times larger than the SFR, using the geometric constraints from the IFU data and the H (I) column density of log N-H (I)/cm(-2) similar or equal to 20.4 obtained from a Hubble Space Telescope/COS near-UV spectrum. From a detailed analysis of the low-ionization lines (e.g., Zn II, Cr II, Ti II, MnII, Si II), the accreting material appears to be enriched to about 0.4 Z(circle dot) (albeit with large uncertainties: log Z/Z(circle dot) = -0.4 +/- 0.4), which is comparable to the galaxy metallicity (12 + log O/H = 8.7 +/- 0.2), implying a large recycling fraction from past outflows. Blueshifted Mg II and Fe II absorptions in the galaxy spectrum from the MUSE data reveal the presence of an outflow. The Mg II and Fe II absorption line ratios indicate emission infilling due to scattering processes, but the MUSE data do not show any signs of fluorescent Fe II* emission. KW - galaxies: evolution KW - galaxies: formation KW - intergalactic medium KW - quasars: individual (SDSS J142253.31-000149) Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/820/2/121 SN - 0004-637X SN - 1538-4357 VL - 820 SP - 1872 EP - 1882 PB - IOP Publ. Ltd. CY - Bristol ER -