TY - THES A1 - Korkuć, Paula T1 - Spatial investigations of protein structures with regard to compound binding and post-translational modifications Y1 - 2016 ER - TY - THES A1 - Sokolowska, Ewelina Maria T1 - Implementation of a plasmodesmata gatekeeper system, and its effect on intercellular transport Y1 - 2016 ER - TY - GEN A1 - Lah, Ljerka A1 - Trense, Daronja A1 - Benke, Harald A1 - Berggren, Per A1 - Gunnlaugsson, Þorvaldur A1 - Lockyer, Christina A1 - Öztürk, Ayaka A1 - Öztürk, Bayram A1 - Pawliczka, Iwona A1 - Roos, Anna A1 - Siebert, Ursula A1 - Skóra, Krzysztof A1 - Víkingsson, Gísli A1 - Tiedemann, Ralph T1 - Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise N2 - The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 295 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-100813 SN - 1866-8372 ER - TY - JOUR A1 - Lah, Ljerka A1 - Trense, Daronja A1 - Benke, Harald A1 - Berggren, Per A1 - Gunnlaugsson, Þorvaldur A1 - Lockyer, Christina A1 - Öztürk, Ayaka A1 - Öztürk, Bayram A1 - Pawliczka, Iwona A1 - Roos, Anna A1 - Siebert, Ursula A1 - Skóra, Krzysztof A1 - Víkingsson, Gísli A1 - Tiedemann, Ralph T1 - Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise JF - PLoS one N2 - The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0162792 SN - 1932-6203 VL - 11 IS - 10 PB - PLoS CY - Lawrence, Kan. ER - TY - THES A1 - Gopalakrishnan, Sathej T1 - Mathematical modelling of host-disease-drug interactions in HIV disease T1 - Mathematische Modellierung von Pathogen-Wirkstoff-Wirt-Interaktionen im Kontext der HIV Erkrankung N2 - The human immunodeficiency virus (HIV) has resisted nearly three decades of efforts targeting a cure. Sustained suppression of the virus has remained a challenge, mainly due to the remarkable evolutionary adaptation that the virus exhibits by the accumulation of drug-resistant mutations in its genome. Current therapeutic strategies aim at achieving and maintaining a low viral burden and typically involve multiple drugs. The choice of optimal combinations of these drugs is crucial, particularly in the background of treatment failure having occurred previously with certain other drugs. An understanding of the dynamics of viral mutant genotypes aids in the assessment of treatment failure with a certain drug combination, and exploring potential salvage treatment regimens. Mathematical models of viral dynamics have proved invaluable in understanding the viral life cycle and the impact of antiretroviral drugs. However, such models typically use simplified and coarse-grained mutation schemes, that curbs the extent of their application to drug-specific clinical mutation data, in order to assess potential next-line therapies. Statistical models of mutation accumulation have served well in dissecting mechanisms of resistance evolution by reconstructing mutation pathways under different drug-environments. While these models perform well in predicting treatment outcomes by statistical learning, they do not incorporate drug effect mechanistically. Additionally, due to an inherent lack of temporal features in such models, they are less informative on aspects such as predicting mutational abundance at treatment failure. This limits their application in analyzing the pharmacology of antiretroviral drugs, in particular, time-dependent characteristics of HIV therapy such as pharmacokinetics and pharmacodynamics, and also in understanding the impact of drug efficacy on mutation dynamics. In this thesis, we develop an integrated model of in vivo viral dynamics incorporating drug-specific mutation schemes learned from clinical data. Our combined modelling approach enables us to study the dynamics of different mutant genotypes and assess mutational abundance at virological failure. As an application of our model, we estimate in vivo fitness characteristics of viral mutants under different drug environments. Our approach also extends naturally to multiple-drug therapies. Further, we demonstrate the versatility of our model by showing how it can be modified to incorporate recently elucidated mechanisms of drug action including molecules that target host factors. Additionally, we address another important aspect in the clinical management of HIV disease, namely drug pharmacokinetics. It is clear that time-dependent changes in in vivo drug concentration could have an impact on the antiviral effect, and also influence decisions on dosing intervals. We present a framework that provides an integrated understanding of key characteristics of multiple-dosing regimens including drug accumulation ratios and half-lifes, and then explore the impact of drug pharmacokinetics on viral suppression. Finally, parameter identifiability in such nonlinear models of viral dynamics is always a concern, and we investigate techniques that alleviate this issue in our setting. N2 - Das Humane Immundefiecienz-Virus (HIV) widerstanden hat fast drei Jahrzehnten eff Orts targeting eine Heilung. Eine anhaltende Unterdrückung des Virus hat noch eine Herausforderung, vor allem aufgrund der bemerkenswerten evolutionären Anpassung, dass das Virus Exponate durch die Ansammlung von Medikamenten-resistenten Mutationen in seinem Genom. Aktuelle therapeutische Strategien zielen auf das Erreichen und die Erhaltung einer niedrigen virale Belastung und umfassen in der Regel mehrere Medikamente. Die Wahl der optimalen Kombinationen dieser Medikamente ist von entscheidender Bedeutung, besonders im Hintergrund der Behandlung Fehler eingetreten, die zuvor mit bestimmten anderen Medikamenten. Ein Verständnis für die Dynamik der viralen mutierten Genotypen Aids in die Bewertung der Behandlung Fehler mit einer bestimmten Kombination und der Erkundung potenzieller Bergung Behandlungsschemata. Mathematische Modelle für virale Dynamik haben sich als unschätzbar erwiesen hat im Verständnis der viralen Lebenszyklus und die Auswirkungen von antiretroviralen Medikamenten. Allerdings sind solche Modelle verwenden in der Regel simplified und grobkörnigen Mutation Regelungen, dass Aufkantungen den Umfang ihrer Anwendung auf Arzneimittel-ganz speziellec Mutation klinische Daten, um zu beurteilen, mögliche nächste-line Therapien. Statistische Modelle der Mutation Anhäufung gedient haben gut in präparieren Mechanismen der Resistenz Evolution durch Mutation Rekonstruktion Pathways unter verschiedenen Medikamenten-Umgebungen. Während diese Modelle führen gut in der Vorhersage der Ergebnisse der Behandlung durch statistische lernen, sie enthalten keine Droge E ffect mechanistisch. Darüber hinaus aufgrund einer innewohnenden Mangel an zeitlichen Funktionen in solchen Modellen, sie sind weniger informativ auf Aspekte wie die Vorhersage mutational Fülle an Versagen der Behandlung. Dies schränkt die Anwendung in der Analyse der Pharmakologie von antiretroviralen Medikamenten, insbesondere, Zeit-abhängige Merkmale der HIV-Therapie wie Pharmakokinetik und Pharmakodynamik, und auch in dem Verständnis der Auswirkungen von Drogen e fficacy auf Mutation Dynamik. In dieser Arbeit, die wir bei der Entwicklung eines integrierten Modells von In-vivo-virale Dynamik Einbeziehung drug-ganz speziellec Mutation Systeme gelernt aus den klinischen Daten. Unsere kombinierten Modellansatz ermöglicht uns die Untersuchung der Dynamik von diff schiedene mutierten Genotypen und bewerten mutational Fülle an virologischem Versagen. Als Anwendung unseres Modells schätzen wir In-vivo-fitness Merkmale der viralen Mutanten unter di fferent drug Umgebungen. Unser Ansatz erstreckt sich auch natürlich auf mehrere-Therapien. Weitere zeigen wir die Vielseitigkeit unseres Modells zeigen, wie es können Modified zu integrieren kürzlich aufgeklärt Mechanismen der Drug Action einschließlich Molekülen, dass target host Faktoren. Zusätzlich haben wir Adresse ein weiterer wichtiger Aspekt in der klinischen Management der HIV-Erkrankung, das heißt Drogen Pharmakokinetik. Es ist klar, dass die Zeit-abhängige Änderungen in In-vivo-Wirkstoffkonzentration könnten die Auswirkungen auf die antivirale E ffect und haben auch Einfluss auf die Entscheidungen über Dosierungsintervalle. Wir präsentieren ein Framework, bietet ein integriertes Verständnis der wichtigsten Merkmale von mehreren Dosierungsschemata einschließlich Kumulation Übersetzungen und Halbwertszeiten, und untersuchen Sie die Auswirkungen von Drogen auf die Pharmakokinetik Virussuppression. Schließlich, Parameter identifiFähigkeit in solchen nichtlineare Modelle der virale Dynamik ist immer ein Anliegen, und wir untersuchen Methoden, um dieses Problem in unserer Einstellung. KW - HIV KW - mathematical modelling KW - viral fitness KW - pharmacokinetics KW - parameter estimation KW - HIV Erkrankung KW - Pharmakokinetik KW - Fitness KW - mathematische Modellierung KW - Kombinationstherapie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-100100 ER - TY - THES A1 - Wutke, Saskia T1 - Tracing Changes in Space and Time BT - Paternal Diversity and Phenotypic Traits during Horse Domestication N2 - The horse is a fascinating animal symbolizing power, beauty, strength and grace. Among all the animal species domesticated the horse had the largest impact on the course of human history due to its importance for warfare and transportation. Studying the process of horse domestication contributes to the knowledge about the history of horses and even of our own species. Research based on molecular methods has increasingly focused on the genetic basis of horse domestication. Mitochondrial DNA (mtDNA) analyses of modern and ancient horses detected immense maternal diversity, probably due to many mares that contributed to the domestic population. However, mtDNA does not provide an informative phylogeographic structure. In contrast, Y chromosome analyses displayed almost complete uniformity in modern stallions but relatively high diversity in a few ancient horses. Further molecular markers that seem to be well suited to infer the domestication history of horses or genetic and phenotypic changes during this process are loci associated with phenotypic traits. This doctoral thesis consists of three different parts for which I analyzed various single nucleotide polymorphisms (SNPs) associated with coat color, locomotion or Y chromosomal variation of horses. These SNPs were genotyped in 350 ancient horses from the Chalcolithic (5,000 BC) to the Middle Ages (11th century). The distribution of the samples ranges from China to the Iberian Peninsula and Iceland. By applying multiplexed next-generation sequencing (NGS) I sequenced short amplicons covering the relevant positions: i) eight coat-color-associated mutations in six genes to deduce the coat color phenotype; ii) the so-called ’Gait-keeper’ SNP in the DMRT3 gene to screen for the ability to amble; iii) 16 SNPs previously detected in ancient horses to infer the corresponding haplotype. Based on these data I investigated the occurrence and frequencies of alleles underlying the respective phenotypes as well as Y chromosome haplotypes at different times and regions. Also, selection coefficients for several Y chromosome lineages or phenotypes were estimated. Concerning coat color differences in ancient horses my work constitutes the most comprehensive study to date. I detected an increase of chestnut horses in the Middle Ages as well as differential selection for spotted and solid phenotypes over time which reflects changing human preferences. With regard to ambling horses, the corresponding allele was present in medieval English and Icelandic horses. Based on these results I argue that Norse settlers, who frequently invaded parts of Britain, brought ambling individuals to Iceland from the British Isles which can be regarded the origin of this trait. Moreover, these settlers appear to have selected for ambling in Icelandic horses. Relating to the third trait, the paternal diversity, these findings represent the largest ancient dataset of Y chromosome variation in non-humans. I proved the existence of several Y chromosome haplotypes in early domestic horses. The decline of Y chromosome variation coincides with the movement of nomadic peoples from the Eurasian steppes and later with different breeding practices in the Roman period. In conclusion, positive selection was estimated for several phenotypes/lineages in different regions or times which indicates that these were preferred by humans. Furthermore, I could successfully infer the distribution and dispersal of horses in association with human movements and actions. Thereby, a better understanding of the influence of people on the changing appearance and genetic diversity of domestic horses could be gained. My results also emphasize the close relationship of ancient genetics and archeology or history and that only in combination well-founded conclusions can be reached. KW - ancient DNA KW - domestication KW - horse KW - equus caballus KW - locomotion KW - Y chromosome KW - coat colour Y1 - 2016 ER - TY - THES A1 - Hofferek, Vinzenz T1 - Starvation response of Drosophila melanogaster BT - a Lipidomic Approach Y1 - 2016 ER - TY - THES A1 - Avcilar-Kucukgoze, Irem T1 - Effect of tRNA Aminoacylation and Cellular Resources Allocation on the Dynamics of Translation in Escherichia coli Y1 - 2016 ER - TY - THES A1 - Reil, Daniela T1 - Puumala hantavirus dynamics in bank voles: identification of environmental correlates to predict human infection risk Y1 - 2016 ER - TY - THES A1 - Nietzsche, Madlen T1 - Identifizierung und Charakterisierung neuer Komponenten der SnRK1-Signaltransduktion in Arabidopsis thaliana T1 - Identification and characterization of novel components of SnRK1-Signalling in Arabidopsis thaliana N2 - Für alle Organismen ist die Aufrechterhaltung ihres energetischen Gleichgewichts unter fluktuierenden Umweltbedingungen lebensnotwendig. In Eukaryoten steuern evolutionär konservierte Proteinkinasen, die in Pflanzen als SNF1-RELATED PROTEIN KINASE1 (SnRK1) bezeichnet werden, die Adaption an Stresssignale aus der Umwelt und an die Limitierung von Nährstoffen und zellulärer Energie. Die Aktivierung von SnRK1 bedingt eine umfangreiche transkriptionelle Umprogrammierung, die allgemein zu einer Repression energiekonsumierender Prozesse wie beispielsweise Zellteilung und Proteinbiosynthese und zu einer Induktion energieerzeugender, katabolischer Stoffwechselwege führt. Wie unterschiedliche Signale zu einer generellen sowie teilweise gewebe- und stressspezifischen SnRK1-vermittelten Antwort führen ist bisher noch nicht ausreichend geklärt, auch weil bislang nur wenige Komponenten der SnRK1-Signaltransduktion identifiziert wurden. In dieser Arbeit konnte ein Protein-Protein-Interaktionsnetzwerk um die SnRK1αUntereinheiten aus Arabidopsis AKIN10/AKIN11 etabliert werden. Dadurch wurden zunächst Mitglieder der pflanzenspezifischen DUF581-Proteinfamilie als Interaktionspartner der SnRK1α-Untereinheiten identifiziert. Diese Proteine sind über ihre konservierte DUF581Domäne, in der ein Zinkfinger-Motiv lokalisiert ist, fähig mit AKIN10/AKIN11 zu interagieren. In planta Ko-Expressionsanalysen zeigten, dass die DUF581-Proteine eine Verschiebung der nucleo-cytoplasmatischen Lokalisierung von AKIN10 hin zu einer nahezu ausschließlichen zellkernspezifischen Lokalisierung begünstigen sowie die Ko-Lokalisierung von AKIN10 und DUF581-Proteinen im Nucleus. In Bimolekularen Fluoreszenzkomplementations-Analysen konnte die zellkernspezifische Interaktion von DUF581-Proteinen mit SnRK1α-Untereinheiten in planta bestätigt werden. Außerhalb der DUF581-Domäne weisen die Proteine einander keine große Sequenzähnlichkeit auf. Aufgrund ihrer Fähigkeit mit SnRK1 zu interagieren, dem Fehlen von SnRK1Phosphorylierungsmotiven sowie ihrer untereinander sehr variabler gewebs-, entwicklungs- und stimulusspezifischer Expression wurde für DUF581-Proteine eine Funktion als Adaptoren postuliert, die unter bestimmten physiologischen Bedingungen spezifische Substratproteine in den SnRK1-Komplex rekrutieren. Auf diese Weise könnten DUF581Proteine die Interaktion von SnRK1 mit deren Zielproteinen modifizieren und eine Feinjustierung der SnRK1-Signalweiterleitung ermöglichen. Durch weiterführende Interaktionsstudien konnten DUF581-interagierende Proteine darunter Transkriptionsfaktoren, Proteinkinasen sowie regulatorische Proteine gefunden werden, die teilweise ebenfalls Wechselwirkungen mit SnRK1α-Untereinheiten aufzeigten. Im Rahmen dieser Arbeit wurde eines dieser Proteine für das eine Beteiligung an der SnRK1Signalweiterleitung als Transkriptionsregulator vermutet wurde näher charakterisiert. STKR1 (STOREKEEPER RELATED 1), ein spezifischer Interaktionspartner von DUF581-18, gehört zu einer pflanzenspezifischen Leucin-Zipper-Transkriptionsfaktorfamilie und interagiert in Hefe sowie in planta mit SnRK1. Die zellkernspezifische Interaktion von STKR1 und AKIN10 in Pflanzen unterstützt die Vermutung der kooperativen Regulation von Zielgenen. Weiterhin stabilisierte die Anwesenheit von AKIN10 die Proteingehalte von STKR1, das wahrscheinlich über das 26S Proteasom abgebaut wird. Da es sich bei STKR1 um ein Phosphoprotein mit SnRK1-Phosphorylierungsmotiv handelt, stellt es sehr wahrscheinlich ein SnRK1-Substrat dar. Allerdings konnte eine SnRK1-vermittelte Phosphorylierung von STKR1 in dieser Arbeit nicht gezeigt werden. Der Verlust von einer Phosphorylierungsstelle beeinflusste die Homo- und Heterodimerisierungsfähigkeit von STKR1 in Hefeinteraktionsstudien, wodurch eine erhöhte Spezifität der Zielgenregulation ermöglicht werden könnte. Außerdem wurden Arabidopsis-Pflanzen mit einer veränderten STKR1-Expression phänotypisch, physiologisch und molekularbiologisch charakterisiert. Während der Verlust der STKR1-Expression zu Pflanzen führte, die sich kaum von Wildtyp-Pflanzen unterschieden, bedingte die konstitutive Überexpression von STKR1 ein stark vermindertes Pflanzenwachstum sowie Entwicklungsverzögerungen hinsichtlich der Blühinduktion und Seneszenz ähnlich wie sie auch bei SnRK1α-Überexpression beschrieben wurden. Pflanzen dieser Linien waren nicht in der Lage Anthocyane zu akkumulieren und enthielten geringere Gehalte an Chlorophyll und Carotinoiden. Neben einem erhöhten nächtlichen Stärkeumsatz waren die Pflanzen durch geringere Saccharosegehalte im Vergleich zum Wildtyp gekennzeichnet. Eine Transkriptomanalyse ergab, dass in den STKR1-überexprimierenden Pflanzen unter Energiemangelbedingungen, hervorgerufen durch eine verlängerte Dunkelphase, eine größere Anzahl an Genen im Vergleich zum Wildtyp differentiell reguliert war als während der Lichtphase. Dies spricht für eine Beteiligung von STKR1 an Prozessen, die während der verlängerten Dunkelphase aktiv sind. Ein solcher ist beispielsweise die SnRK1-Signaltransduktion, die unter energetischem Stress aktiviert wird. Die STKR1Überexpression führte zudem zu einer verstärkten transkriptionellen Induktion von Abwehrassoziierten Genen sowie NAC- und WRKY-Transkriptionsfaktoren nach verlängerter Dunkelphase. Die Transkriptomdaten deuteten auf eine stimulusunabhängige Induktion von Abwehrprozessen hin und konnten eine Erklärung für die phänotypischen und physiologischen Auffälligkeiten der STKR1-Überexprimierer liefern. N2 - For all living organism maintenance of energy homeostasis under changing environmental conditions is indispensable. In eukaryotes, evolutionary conserved protein kinases, such as the SNF1-RELATED PROTEIN KINASE1 (SnRK1) in plants, integrate environmental stress signals, nutrient availability and energy depletion during adaptational responses. Activation of SnRK1 triggers a broad transcriptional reprogramming, which in general represses energy consuming processes such as proliferation and protein biosynthesis and induces energy producing catabolic pathways. Although SnRK1 acts as a convergent point for many different environmental and metabolic signals to control growth and development, it is currently unknown how these many different signals could be translated into a cell-type or stimulusspecific response. This is also due to the fact that only a few proteins participating in SnRK1 signal transduction have yet been identified. In this work, a protein-protein interaction network of the Arabidopsis SnRK1α-subunits AKIN10/AKIN11 was established. Thereby, members of the plant specific DUF581 protein family were identified as SnRK1α interacting proteins. The highly conserved DUF581 domain possesses a zinc finger motif and mediates the interaction with AKIN10/AKIN11. In planta co-expression of AKIN10 with DUF581 proteins leads to a shift of subcellular localization from a nucleo-cytoplasmic distribution of both proteins to a nearly exclusive nuclear localization and show that AKIN10 and DUF581 proteins co-localize in nuclei of plant cells. Bimolecular fluorescence complementation analysis revealed that SnRK1α-subunits interact with DUF581 proteins in plants. Apart from their DUF581 domain there is no strong sequence similarity between DUF581 proteins. Because of their ability to interact with SnRK1, the absence of SnRK1-target motifs and their highly variable transcriptional regulation in a tissue-, development- or stimuli-specific manner, it is possible that DUF581 proteins act as adaptor proteins recruiting substrate proteins into the SnRK1 complex under defined physiological conditions. That said, DUF581 could modify the interaction of SnRK1 with its target proteins and facilitate fine-tuning of SnRK1 signal transduction. Additional interaction studies revealed further DUF581 interacting proteins such as transcription factors, protein kinases and regulatory proteins that in part were also able to interact with SnRK1α. One of these proteins which is supposed to be involved in SnRK1 signaling as a transcriptional regulator was characterized in more detail: Arabidopsis STKR1 (STOREKEPPER RELATED 1) a DUF581-18 interaction partner belongs to a plant specific leucine zipper transcription factor family and is able to interact with SnRK1 in yeast and in planta. Co-operative regulation of target genes by STKR1 and AKIN10 is supported by the specific interaction of these proteins inside the plant nucleus. Furthermore, AKIN10 seems to stabilize protein levels of STKR1 in that it attenuates its proteasomal turnover. Due to the fact that STKR1 is a phosphoprotein with putative SnRK1 target motives it is likely a SnRK1 substrate. However, SnRK1 mediated phosphorylation of STKR1 could not be shown in this work. Though, interaction studies in yeast revealed that a loss of putative phosphorylation sites influences the ability of homo- and hetero-dimerization of STKR1, possibly allowing a higher specificity during target gene regulation. Another part of this work was the phenotypic, physiological and molecular characterization of Arabidopsis plants with altered expression of STKR1. Whereas the absence of STKR1 expression results in plants without strong phenotypic abnormality compared to wildtype the overexpression leads to a strong decrease in plant growth as well as developmental retardations regarding to the induction of flowering and senescence reminiscent of SnRK1overexpressing plants. Plants of these lines were not able to accumulate anthocyanins and also contain reduced levels of chlorophyll and carotenoids. Besides a higher starch turnover in dark, these plants displayed lower sucrose contents. Microarray analysis revealed that under energy deficit stress, induced by extended darkness, a higher number of genes were differentially regulated in plants overexpressing STKR1 compared to wildtype than during the light period. This observation argues for a participation of STKR1 in processes, which are active under extended darkness, being the case for SnRK1 signaling which is strongly activated under energy deficient stress. Overexpression of STKR1 also leads to transcriptional induction of genes associated with defense like NAC and WRKY transcription factors after an extended dark. Results of transcriptome data analysis indicate a stimulus independent induction of defense associated processes and are suitable to explain phenotypical and physiological abnormality of the STKR1 overexpressing lines. KW - SnRK1 KW - Proteinkinase KW - Phosphorylierung KW - Arabidopsis thaliana KW - Energiemangel KW - phosphorylation KW - energy starvation KW - protein kinase Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98678 ER -