TY - JOUR A1 - Vandewal, Koen A1 - Albrecht, Steve A1 - Hoke, Eric T. A1 - Graham, Kenneth R. A1 - Widmer, Johannes A1 - Douglas, Jessica D. A1 - Schubert, Marcel A1 - Mateker, William R. A1 - Bloking, Jason T. A1 - Burkhard, George F. A1 - Sellinger, Alan A1 - Frechet, Jean M. J. A1 - Amassian, Aram A1 - Riede, Moritz K. A1 - McGehee, Michael D. A1 - Neher, Dieter A1 - Salleo, Alberto T1 - Efficient charge generation by relaxed charge-transfer states at organic interfaces JF - Nature materials N2 - carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold viaweakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer: fullerene, small-molecule:C-60 and polymer: polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. Y1 - 2014 U6 - https://doi.org/10.1038/NMAT3807 SN - 1476-1122 SN - 1476-4660 VL - 13 IS - 1 SP - 63 EP - 68 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Steyrleuthner, Robert A1 - Di Pietro, Riccardo A1 - Collins, Brian A. A1 - Polzer, Frank A1 - Himmelberger, Scott A1 - Schubert, Marcel A1 - Chen, Zhihua A1 - Zhang, Shiming A1 - Salleo, Alberto A1 - Ade, Harald W. A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility n-Type Copolymer JF - Journal of the American Chemical Society Y1 - 2014 U6 - https://doi.org/10.1021/ja4118736 SN - 0002-7863 VL - 136 IS - 11 SP - 4245 EP - 4256 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schubert, Marcel A1 - Collins, Brian A. A1 - Mangold, Hannah A1 - Howard, Ian A. A1 - Schindler, Wolfram A1 - Vandewal, Koen A1 - Roland, Steffen A1 - Behrends, Jan A1 - Kraffert, Felix A1 - Steyrleuthner, Robert A1 - Chen, Zhihua A1 - Fostiropoulos, Konstantinos A1 - Bittl, Robert A1 - Salleo, Alberto A1 - Facchetti, Antonio A1 - Laquai, Frederic A1 - Ade, Harald W. A1 - Neher, Dieter T1 - Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells JF - Advanced functional materials N2 - New polymers with high electron mobilities have spurred research in organic solar cells using polymeric rather than fullerene acceptors due to their potential of increased diversity, stability, and scalability. However, all-polymer solar cells have struggled to keep up with the steadily increasing power conversion efficiency of polymer: fullerene cells. The lack of knowledge about the dominant recombination process as well as the missing concluding picture on the role of the semi-crystalline microstructure of conjugated polymers in the free charge carrier generation process impede a systematic optimization of all-polymer solar cells. These issues are examined by combining structural and photo-physical characterization on a series of poly(3-hexylthiophene) (donor) and P(NDI2OD-T2) (acceptor) blend devices. These experiments reveal that geminate recombination is the major loss channel for photo-excited charge carriers. Advanced X-ray and electron-based studies reveal the effect of chloronaphthalene co-solvent in reducing domain size, altering domain purity, and reorienting the acceptor polymer crystals to be coincident with those of the donor. This reorientation correlates well with the increased photocurrent from these devices. Thus, effi cient split-up of geminate pairs at polymer/polymer interfaces may necessitate correlated donor/acceptor crystal orientation, which represents an additional requirement compared to the isotropic fullerene acceptors. Y1 - 2014 U6 - https://doi.org/10.1002/adfm.201304216 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 26 SP - 4068 EP - 4081 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Roland, Steffen A1 - Schubert, Marcel A1 - Collins, Brian A. A1 - Kurpiers, Jona A1 - Chen, Zhihua A1 - Facchetti, Antonio A1 - Ade, Harald W. A1 - Neher, Dieter T1 - Fullerene-free polymer solar cells with highly reduced bimolecular recombination and field-independent charge carrier generation JF - The journal of physical chemistry letters N2 - Photogeneration, recombination, and transport of free charge carriers in all-polymer bulk heterojunction solar cells incorporating poly(3-hexylthiophene) (P3HT) as donor and poly([N,N'-bis(2-octyldodecyl)-naphthelene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) (P(NDI2OD-T2)) as acceptor polymer have been investigated by the use of time delayed collection field (TDCF) and time-of-flight (TOF) measurements. Depending on the preparation procedure used to dry the active layers, these solar cells comprise high fill factors (FFs) of up to 67%. A strongly reduced bimolecular recombination (BMR), as well as a field-independent free charge carrier generation are observed, features that are common to high performance fullerene-based solar cells. Resonant soft X-ray measurements (R-SoXS) and photoluminescence quenching experiments (PQE) reveal that the BMR is related to domain purity. Our results elucidate the similarities of this polymeric acceptor with the superior recombination properties of fullerene acceptors. Y1 - 2014 U6 - https://doi.org/10.1021/jz501506z SN - 1948-7185 VL - 5 IS - 16 SP - 2815 EP - 2822 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Schubert, Marcel T1 - Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells T1 - Elementare Prozesse in Schichten elektronen-transportierender Donator-Akzeptor-Copolymere : Untersuchung des Ladungstransports und Anwendung in Organischen Solarzellen N2 - Donor-acceptor (D-A) copolymers have revolutionized the field of organic electronics over the last decade. Comprised of a electron rich and an electron deficient molecular unit, these copolymers facilitate the systematic modification of the material's optoelectronic properties. The ability to tune the optical band gap and to optimize the molecular frontier orbitals as well as the manifold of structural sites that enable chemical modifications has created a tremendous variety of copolymer structures. Today, these materials reach or even exceed the performance of amorphous inorganic semiconductors. Most impressively, the charge carrier mobility of D-A copolymers has been pushed to the technologically important value of 10 cm^{2}V^{-1}s^{-1}. Furthermore, owed to their enormous variability they are the material of choice for the donor component in organic solar cells, which have recently surpassed the efficiency threshold of 10%. Because of the great number of available D-A copolymers and due to their fast chemical evolution, there is a significant lack of understanding of the fundamental physical properties of these materials. Furthermore, the complex chemical and electronic structure of D-A copolymers in combination with their semi-crystalline morphology impede a straightforward identification of the microscopic origin of their superior performance. In this thesis, two aspects of prototype D-A copolymers were analysed. These are the investigation of electron transport in several copolymers and the application of low band gap copolymers as acceptor component in organic solar cells. In the first part, the investigation of a series of chemically modified fluorene-based copolymers is presented. The charge carrier mobility varies strongly between the different derivatives, although only moderate structural changes on the copolymers structure were made. Furthermore, rather unusual photocurrent transients were observed for one of the copolymers. Numerical simulations of the experimental results reveal that this behavior arises from a severe trapping of electrons in an exponential distribution of trap states. Based on the comparison of simulation and experiment, the general impact of charge carrier trapping on the shape of photo-CELIV and time-of-flight transients is discussed. In addition, the high performance naphthalenediimide (NDI)-based copolymer P(NDI2OD-T2) was characterized. It is shown that the copolymer posses one of the highest electron mobilities reported so far, which makes it attractive to be used as the electron accepting component in organic photovoltaic cells.\par Solar cells were prepared from two NDI-containing copolymers, blended with the hole transporting polymer P3HT. I demonstrate that the use of appropriate, high boiling point solvents can significantly increase the power conversion efficiency of these devices. Spectroscopic studies reveal that the pre-aggregation of the copolymers is suppressed in these solvents, which has a strong impact on the blend morphology. Finally, a systematic study of P3HT:P(NDI2OD-T2) blends is presented, which quantifies the processes that limit the efficiency of devices. The major loss channel for excited states was determined by transient and steady state spectroscopic investigations: the majority of initially generated electron-hole pairs is annihilated by an ultrafast geminate recombination process. Furthermore, exciton self-trapping in P(NDI2OD-T2) domains account for an additional reduction of the efficiency. The correlation of the photocurrent to microscopic morphology parameters was used to disclose the factors that limit the charge generation efficiency. Our results suggest that the orientation of the donor and acceptor crystallites relative to each other represents the main factor that determines the free charge carrier yield in this material system. This provides an explanation for the overall low efficiencies that are generally observed in all-polymer solar cells. N2 - Donator-Akzeptor (D-A) Copolymere haben das Feld der organischen Elektronik revolutioniert. Bestehend aus einer elektronen-reichen und einer elektronen-armen molekularen Einheit,ermöglichen diese Polymere die systematische Anpassung ihrer optischen und elektronischen Eigenschaften. Zu diesen zählen insbesondere die optische Bandlücke und die Lage der Energiezustände. Dabei lassen sie sich sehr vielseitig chemisch modifizieren, was zu einer imensen Anzahl an unterschiedlichen Polymerstrukturen geführt hat. Dies hat entscheidend dazu beigetragen, dass D-A-Copolymere heute in Bezug auf ihren Ladungstransport die Effizienz von anorganischen Halbleitern erreichen oder bereits übetreffen. Des Weiteren lassen sich diese Materialien auch hervorragend in Organischen Solarzellen verwenden, welche jüngst eine Effizienz von über 10% überschritten haben. Als Folge der beträchtlichen Anzahl an unterschiedlichen D-A-Copolymeren konnte das physikalische Verständnis ihrer Eigenschaften bisher nicht mit dieser rasanten Entwicklung Schritt halten. Dies liegt nicht zuletzt an der komplexen chemischen und mikroskopischen Struktur im Film, in welchem die Polymere in einem teil-kristallinen Zustand vorliegen. Um ein besseres Verständnis der grundlegenden Funktionsweise zu erlangen, habe ich in meiner Arbeit sowohl den Ladungstransport als auch die photovoltaischen Eigenschaften einer Reihe von prototypischen, elektronen-transportierenden D-A Copolymeren beleuchtet. Im ersten Teil wurden Copolymere mit geringfügigen chemischen Variationen untersucht. Diese Variationen führen zu einer starken Änderung des Ladungstransportverhaltens. Besonders auffällig waren hier die Ergebnisse eines Polymers, welches sehr ungewöhnliche transiente Strom-Charakteristiken zeigte. Die nähere Untersuchung ergab, dass in diesem Material elektrisch aktive Fallenzustände existieren. Dieser Effekt wurde dann benutzt um den Einfluss solcher Fallen auf transiente Messung im Allgemeinen zu beschreiben. Zusätzlich wurde der Elektronentransport in einem neuartigen Copolymer untersucht, welche die bis dato größte gemesse Elektronenmobilität für konjugierte Polymere zeigte. Darauf basierend wurde versucht, die neuartigen Copolymere als Akzeptoren in Organischen Solarzellen zu implementieren. Die Optimierung dieser Zellen erwies sich jedoch als schwierig, konnte aber erreicht werden, indem die Lösungseigenschaften der Copolymere untersucht und systematisch gesteuert wurden. Im Weiteren werden umfangreiche Untersuchungen zu den relevanten Verlustprozessen gezeigt. Besonders hervorzuheben ist hier die Beobachtung, dass hohe Effizienzen nur bei einer coplanaren Packung der Donator/Akzeptor-Kristalle erreicht werden können. Diese Struktureigenschaft wird hier zum ersten Mal beschrieben und stellt einen wichtigen Erkenntnisgewinn zum Verständnis von Polymersolarzellen dar. KW - Organische Solarzellen KW - Ladungstransport KW - Donator-Akzeptor-Copolymere KW - Alternative Akzeptorpolymere KW - Polymer-Kristalle KW - organic solar cells KW - charge transport KW - Donor-acceptor copolymers KW - alternative electron acceptors KW - polymer crystal orientation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70791 ER -