TY - JOUR A1 - Spijkerman, Elly T1 - Inorganic carbon acquisition by Chlamydomonas acidophila across a pH range N2 - Chlamydomonas acidophila Negoro had a higher maximum growth rate upon aeration with 5% CO2 (v/v) than in nonaerated conditions at an external pH above 2. In medium with a pH of 1.0 or 2.0, a decrease in the maximum growth rate was observed upon CO2 aeration in comparison with nonaerated conditions. At both very low and very high external pH conditions, an induction of external carbonic anhydrase was detected; this being more pronounced in CO2-aerated cells than in nonaerated cells. It is therefore suggested that the induction of carbonic anhydrase is part of a stress response in Chlamydomonas acidophila. Comparison of some physiological characteristics of Chlamydomonas acidophila acclimated at pH 2.65 and at pH 6.0, revealed that CO2 aeration increased gross maximum photosynthesis at both pHs, whereas respiration, light acclimation, and photoinhibition were not effected. At pH 2.65, Chlamydomonas acidophila was found to have a carbon-concentrating mechanism under nonaerated conditions, whereas it did not under CO2-aerated conditions at pH 6. The affinity for CO2 use in O-2 production was not dependent on CO2 aeration, but it was much lower at pH 6 than it was at pH 2.65. CO2 kinetic characteristics indicate that the photosynthesis of Chlamydomonas acidophila in its natural environment is not limited by inorganic carbon Y1 - 2005 SN - 0008-4026 ER - TY - JOUR A1 - Spijkerman, Elly A1 - Maberly, Stephen C. A1 - Coesel, P. F. M. T1 - Carbon acquisition mechanisms by planktonic desmids and their link to ecological distribution N2 - To test if different inorganic carbon (C-i) uptake mechanisms underlie the ecological distribution pattern of planktonic desmids, we performed pH-drift experiments with 12 strains, belonging to seven species, originating from lakes of different pH. Staurastrum brachiatum Ralfs and Staurodesmus cuspidatus (Ralfs) Teil. var. curvatus (W. West) Teil., species confined to acidic, soft water habitats, showed remarkably different behavior in the pH drift experiments: S. brachiatum appeared to use CO2 only, whereas Staurodesmus cuspidatus appeared to use HCO3- as well. Staurastrum chaetoceras (Schr.) Smith and Staurastrum planctonicum Teil, species well-known for their abundant occurrence in alkaline waters, were the most effective at using HCO3-. Other species, to be encountered in both slightly acidic and slightly alkaline waters, took an intermediate position. Experiments using specific inhibitors suggested that Cosmarium abbreviatum Rac. var. planctonicum W. & G.S. West and S. brachiatum use CO2 by an active CO2 uptake mechanism, whereas S. chaetoceras and Staurodesmus cuspidatus showed an active HCO3- uptake pattern. Most likely, these active uptake mechanisms make use of H+-ATPase, as none of the desmids expressed significant carbonic anhydrase activity. A series of strains of Staurastrum planctonicum isolated from different habitats, all clustered in between the species using HCO3-, but no further differentiation was observed. Therefore, desmids cannot be simply characterized as exclusive CO2 users, and the ecological distribution pattern of a desmid species does not unequivocally link to a certain C-i uptake mechanism. Nevertheless, there does appear to be a general ecological link between a species' C-i uptake mechanism and its ecological distribution Y1 - 2005 SN - 0008-4026 ER - TY - JOUR A1 - Gerloff-Elias, Antje A1 - Spijkerman, Elly A1 - Schubert, H. T1 - Light acclimation of Chlamydomonas acidophila accumulating in the hypolimnion of an acidic lake (pH 2.6) N2 - 1. The unicellular green alga Chlamydomonas acidophila accumulates in a thin phytoplankton layer in the hypolimnion (deep chlorophyll maximum, DCM) of an extremely acidic lake (Lake 111, pH 2.6, Lusatia, Germany), in which the underwater light spectrum is distorted and red-shifted. 2. Chlamydomonas acidophila exhibited a significantly higher absorption efficiency and a higher cellular chlorophyll b content when incubated in the red shifted underwater light of Lake 111 than in a typical, blue-green dominated, light spectrum. 3. Chlamydomonas acidophila has excellent low light acclimation properties (increased chlorophyll b content, increased oxygen yield and a low light saturation point for photosynthesis) that support survival of the species in the low light climate of the DCM. 4. In situ acclimation to the DCM under low light and temperature decreased maximum photosynthetic rate in autotrophic C. acidophila cultures, whereas the presence of glucose under these conditions enhanced photosynthetic efficiency and capacity. 5. The adaptive abilities of C. acidophila to light and temperature shown in this study, in combination with the absence of potent competitors because of low lake pH, most probably enable the unusual dominance of the green alga in the DCM of Lake 111 Y1 - 2005 SN - 0046-5070 ER - TY - JOUR A1 - Gerloff-Elias, Antje A1 - Spijkerman, Elly A1 - Proschold, T. T1 - Effect of external pH on the growth, photosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6) N2 - In extremely acidic lakes, low primary production rates have been measured. We assumed that proton stress might explain these observations and therefore investigated the photosynthetic behaviour of a Chlamydomonas species, a main primary producer in acidic lakes, over a range of pH values. Identified as C. acidophila using small subunit rDNA analysis, this species is identical to other isolates from acidic environments in Europe and South America, suggesting a worldwide distribution. Laboratory experiments with C. acidophila, revealed a broad pH-tolerance for growth and photosynthesis, the lower pH limit lying at pH 1.5 and the upper limit at pH 7. Growth rates at optimum pH conditions (pH 3 and 5) were equal to those of the mesophilic Chlamydomonas reinhardtii. In contrast, photosynthetic rates were significantly higher, suggesting that higher photosynthetic rates compensated for higher dark respiration rates, as confirmed experimentally. Electron transport capacities of PSI and PSII, P700(+) re-reduction times and measurements of PSII fluorescence revealed the induction of alternative electron transport mechanisms, such as chlororespiration, state transitions and cyclic electron transport, only at suboptimal pH values (pH 1.5; 4 and 6-7). The results indicate, that C. acidophila is well adapted to low pH and that the relatively low primary production rates are not a result of pH stress Y1 - 2005 SN - 0140-7791 ER -