TY - GEN A1 - Ihlenburg, Ramona A1 - Lehnen, Anne-Catherine A1 - Koetz, Joachim A1 - Taubert, Andreas T1 - Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1093 KW - cryogel KW - water treatment KW - dye removal KW - methyl orange KW - methylene blue KW - dye mixture Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-488987 SN - 1866-8372 IS - 1093 ER - TY - JOUR A1 - Heyne, Benjamin A1 - Arlt, Kristin A1 - Geßner, André A1 - Richter, Alexander F. A1 - Döblinger, Markus A1 - Feldmann, Jochen A1 - Taubert, Andreas A1 - Wedel, Armin T1 - Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media JF - Nanomaterials N2 - Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%. KW - quantum dots KW - cadmium-free KW - Cd-free KW - InP KW - InPZnS KW - multishell KW - mercaptocarboxylic acids KW - 3-mercaptopropionic acid KW - 11-mercaptoundecanoic acid KW - phase transfer KW - ligand exchange KW - aqueous dispersion KW - QDs Y1 - 2020 U6 - https://doi.org/10.3390/nano10091858 SN - 2079-4991 VL - 10 IS - 9 PB - MDPI CY - Basel ER - TY - GEN A1 - Heyne, Benjamin A1 - Arlt, Kristin A1 - Geßner, André A1 - Richter, Alexander F. A1 - Döblinger, Markus A1 - Feldmann, Jochen A1 - Taubert, Andreas A1 - Wedel, Armin T1 - Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1026 KW - quantum dots KW - cadmium-free KW - Cd-free KW - InP KW - InPZnS KW - multishell KW - mercaptocarboxylic acids KW - 3-mercaptopropionic acid KW - 11-mercaptoundecanoic acid KW - phase transfer KW - ligand exchange KW - aqueous dispersion KW - QDs Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-486032 SN - 1866-8372 IS - 1026 ER - TY - JOUR A1 - Herold, Heike M. A1 - Aigner, Tamara Bernadette A1 - Grill, Carolin E. A1 - Krüger, Stefanie A1 - Taubert, Andreas A1 - Scheibel, Thomas R. T1 - SpiderMAEn BT - recombinant spider silk-based hybrid materials for advanced energy technology JF - Bioinspired, Biomimetic and Nanobiomaterials N2 - A growing energy demand requires new and preferably renewable energy sources. The infinite availability of solar radiation makes its conversion into storable and transportable energy forms attractive for research as well as for the industry. One promising example of a transportable fuel is hydrogen (H-2), making research into eco-friendly hydrogen production meaningful. Here, a hybrid system was developed using newly designed recombinant spider silk protein variants as a template for mineralization with inorganic titanium dioxide and gold. These bioinspired organic/inorganic hybrid materials allow for hydrogen production upon light irradiation. To begin with, recombinant spider silk proteins bearing titanium dioxide and gold-binding moieties were created and processed into structured films. These films were modified with gold and titanium dioxide in order to produce a photocatalyst. Subsequent testing revealed hydrogen production as a result of light-induced hydrolysis of water. Therefore, the novel setup presented here provides access to a new principle of generating advanced hybrid materials for sustainable hydrogen production and depicts a promising platform for further studies on photocatalytic production of hydrogen, the most promising future fuel. KW - hybrid materials KW - hydrogen KW - photocatalysts Y1 - 2019 U6 - https://doi.org/10.1680/jbibn.18.00007 SN - 2045-9858 SN - 2045-9866 VL - 8 IS - 1 SP - 99 EP - 108 PB - ICE Publishing CY - Westminister ER - TY - JOUR A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Börner, Hans Gerhard A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization BT - effect of oligo(aspartic acid)-rich interfaces JF - CrystEngComm N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air–water and air–buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression–expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. Y1 - 2015 U6 - https://doi.org/10.1039/C4CE02274B SN - 1466-8033 IS - 17 SP - 6901 EP - 6913 PB - Royal Society of Chemistry CY - London ER - TY - GEN A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Börner, Hans Gerhard A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization BT - effect of oligo(aspartic acid)-rich interfaces N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air–water and air–buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression–expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 213 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89540 SP - 6901 EP - 6913 ER - TY - JOUR A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Boerner, Hans G. A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization: effect of oligo(aspartic acid)-rich interfaces JF - CrystEngComm N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air-water and air-buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression-expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. Y1 - 2015 U6 - https://doi.org/10.1039/c4ce02274b SN - 1466-8033 VL - 17 IS - 36 SP - 6901 EP - 6913 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Hentrich, Doreen A1 - Brezesinski, Gerald A1 - Kuebel, Christian A1 - Bruns, Michael A1 - Taubert, Andreas T1 - Cholesteryl Hemisuccinate Monolayers Efficiently Control Calcium Phosphate Nucleation and Growth JF - Crystal growth & design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials N2 - The article describes the phase behavior of cholesteryl hemisuccinate at the air-liquid interface and its effect on calcium phosphate (CP) mineralization. The amphiphile forms stable monolayers with phase transitions at the air-liquid interface from a gas to a tilted liquid-condensed (TLC) and finally to an untilted liquid-condensed (ULC) phase. CP mineralization beneath these monolayers leads to crumpled CP layers made from individual plates. The main crystal phase is octacalcium phosphate (OCP) along with a minor fraction of hydroxyapatite (HAP), as confirmed by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, bright field transmission electron microscopy, and electron diffraction. Y1 - 2017 U6 - https://doi.org/10.1021/acs.cgd.7b00753 SN - 1528-7483 SN - 1528-7505 VL - 17 SP - 5764 EP - 5774 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Haase, Andrea A1 - Rott, Stephanie A1 - Mantion, Alexandre A1 - Graf, Philipp A1 - Plendl, Johanna A1 - Thünemann, Andreas F. A1 - Meier, Wolfgang P. A1 - Taubert, Andreas A1 - Luch, Andreas A1 - Reiser, Georg T1 - Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses JF - Toxicological sciences N2 - In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 mu g/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 mu g/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages. KW - silver nanoparticles KW - neurons KW - oxidative stress KW - protein carbonyls KW - calcium Y1 - 2012 U6 - https://doi.org/10.1093/toxsci/kfs003 SN - 1096-6080 VL - 126 IS - 2 SP - 457 EP - 468 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Haase, Andrea A1 - Arlinghaus, Heinrich F. A1 - Tentschert, Jutta A1 - Jungnickel, Harald A1 - Graf, Philipp A1 - Mantion, Alexandre A1 - Draude, Felix A1 - Galla, Sebastian A1 - Plendl, Johanna A1 - Goetz, Mario E. A1 - Masic, Admir A1 - Meier, Wolfgang P. A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas A1 - Luch, Andreas T1 - Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses JF - ACS nano N2 - Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity In macrophages. The cellular responses monitored are. hierarchically linked, but follow individual kinetics and are partially reversible. KW - nanosilver KW - Laser-SNMS KW - TOF-SIMS KW - confocal Raman microscopy KW - oxidative stress KW - protein carbonyls Y1 - 2011 U6 - https://doi.org/10.1021/nn200163w SN - 1936-0851 VL - 5 IS - 4 SP - 3059 EP - 3068 PB - American Chemical Society CY - Washington ER -