TY - GEN A1 - Nojima, Hiroyuki A1 - Konishi, Takanori A1 - Freeman, Christopher M. A1 - Schuster, Rebecca M. A1 - Japtok, Lukasz A1 - Kleuser, Burkhard A1 - Edwards, Michael J. A1 - Gulbins, Erich A1 - Lentsch, Alex B. T1 - Chemokine receptors, CXCR1 and CXCR2, differentially regulate exosome release in hepatocytes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Exosomes are small membrane vesicles released by different cell types, including hepatocytes, that play important roles in intercellular communication. We have previously demonstrated that hepatocyte-derived exosomes contain the synthetic machinery to form sphingosine-1-phosphate (S1P) in target hepatocytes resulting in proliferation and liver regeneration after ischemia/reperfusion (I/R) injury. We also demonstrated that the chemokine receptors, CXCR1 and CXCR2, regulate liver recovery and regeneration after I/R injury. In the current study, we sought to determine if the regulatory effects of CXCR1 and CXCR2 on liver recovery and regeneration might occur via altered release of hepatocyte exosomes. We found that hepatocyte release of exosomes was dependent upon CXCR1 and CXCR2. CXCR1-deficient hepatocytes produced fewer exosomes, whereas CXCR2-deficient hepatocytes produced more exosomes compared to their wild-type controls. In CXCR2-deficient hepatocytes, there was increased activity of neutral sphingomyelinase (Nsm) and intracellular ceramide. CXCR1-deficient hepatocytes had no alterations in Nsm activity or ceramide production. Interestingly, exosomes from CXCR1-deficient hepatocytes had no effect on hepatocyte proliferation, due to a lack of neutral ceramidase and sphingosine kinase. The data demonstrate that CXCR1 and CXCR2 regulate hepatocyte exosome release. The mechanism utilized by CXCR1 remains elusive, but CXCR2 appears to modulate Nsm activity and resultant production of ceramide to control exosome release. CXCR1 is required for packaging of enzymes into exosomes that mediate their hepatocyte proliferative effect. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 538 KW - hepatic ischemia-reperfusion KW - liver-regeneration KW - injury KW - ischemia/reperfusion KW - neutrophil KW - ceramide KW - homolog KW - mice KW - mechanisms KW - recovery Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410885 SN - 1866-8372 IS - 538 ER - TY - GEN A1 - Festman, Julia A1 - Clahsen, Harald T1 - How Germans prepare for the English past tense BT - silent production of inflected words during EEG T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Processes involved in late bilinguals' production of morphologically complex words were studied using an event-related brain potentials (ERP) paradigm in which EEGs were recorded during participants' silent productions of English past- and present-tense forms. Twenty-three advanced second language speakers of English (first language [L1] German) were compared to a control group of 19 L1 English speakers from an earlier study. We found a frontocentral negativity for regular relative to irregular past-tense forms (e.g., asked vs. held) during (silent) production, and no difference for the present-tense condition (e.g., asks vs. holds), replicating the ERP effect obtained for the L1 group. This ERP effect suggests that combinatorial processing is involved in producing regular past-tense forms, in both late bilinguals and L1 speakers. We also suggest that this paradigm is a useful tool for future studies of online language production. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 504 KW - morphologically complex words KW - masked priming experiments KW - brain potentials KW - speech production KW - time-course KW - language production KW - electrophysiological evidence KW - late bilinguals KW - lexical access KW - 2nd-language Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413678 SN - 1866-8364 IS - 504 ER - TY - GEN A1 - Memczak, Henry A1 - Lauster, Daniel A1 - Kar, Parimal A1 - Di Lella, Santiago A1 - Volkmer, Rudolf A1 - Knecht, Volker A1 - Herrmann, Andreas A1 - Ehrentreich-Förster, Eva A1 - Bier, Frank Fabian A1 - Stöcklein, Walter F. M. T1 - Anti-hemagglutinin antibody derived lead peptides for inhibitors of influenza virus binding T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/MuteSwan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 536 KW - receptor-binding KW - A viruses KW - neutralizing antibody KW - avian influenza KW - origin KW - neuraminidase KW - invection KW - entry KW - sites KW - identification Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410872 SN - 1866-8372 IS - 536 ER - TY - GEN A1 - Langerwisch, Fanny A1 - Walz, Ariane A1 - Rammig, Anja A1 - Tietjen, Britta A1 - Thonicke, Kirsten A1 - Cramer, Wolfgang T1 - Deforestation in Amazonia impacts riverine carbon dynamics T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20% (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60% due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40% under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 535 KW - Global vegetation model KW - Climate-Change KW - Brazilian Amazon KW - organic-matter KW - land-use KW - secondary forests KW - seed dispersal KW - Atlantic-Ocean KW - basin KW - CO2 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410225 SN - 1866-8372 IS - 535 ER - TY - GEN A1 - Bhatara, Anjali A1 - Laukka, Petri A1 - Boll-Avetisyan, Natalie A1 - Granjon, Lionel A1 - Elfenbein, Hillary Anger A1 - Bänziger, Tanja T1 - Second language ability and emotional prosody perception T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The present study examines the effect of language experience on vocal emotion perception in a second language. Native speakers of French with varying levels of self-reported English ability were asked to identify emotions from vocal expressions produced by American actors in a forced-choice task, and to rate their pleasantness, power, alertness and intensity on continuous scales. Stimuli included emotionally expressive English speech (emotional prosody) and non-linguistic vocalizations (affect bursts), and a baseline condition with Swiss-French pseudo-speech. Results revealed effects of English ability on the recognition of emotions in English speech but not in non-linguistic vocalizations. Specifically, higher English ability was associated with less accurate identification of positive emotions, but not with the interpretation of negative emotions. Moreover, higher English ability was associated with lower ratings of pleasantness and power, again only for emotional prosody. This suggests that second language skills may sometimes interfere with emotion recognition from speech prosody, particularly for positive emotions. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 503 KW - recognizing emotions KW - basic emotions KW - recognition KW - language KW - vocalizations KW - speech KW - models Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411860 SN - 1866-8364 IS - 503 ER - TY - GEN A1 - Prahl, Boris F. A1 - Rybski, Diego A1 - Boettle, Markus A1 - Kropp, Jürgen T1 - Damage functions for climate-related hazards BT - unification and uncertainty analysis T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Most climate change impacts manifest in the form of natural hazards. Damage assessment typically relies on damage functions that translate the magnitude of extreme events to a quantifiable damage. In practice, the availability of damage functions is limited due to a lack of data sources and a lack of understanding of damage processes. The study of the characteristics of damage functions for different hazards could strengthen the theoretical foundation of damage functions and support their development and validation. Accordingly, we investigate analogies of damage functions for coastal flooding and for wind storms and identify a unified approach. This approach has general applicability for granular portfolios and may also be applied, for example, to heat-related mortality. Moreover, the unification enables the transfer of methodology between hazards and a consistent treatment of uncertainty. This is demonstrated by a sensitivity analysis on the basis of two simple case studies (for coastal flood and storm damage). The analysis reveals the relevance of the various uncertainty sources at varying hazard magnitude and on both the microscale and the macroscale level. Main findings are the dominance of uncertainty from the hazard magnitude and the persistent behaviour of intrinsic uncertainties on both scale levels. Our results shed light on the general role of uncertainties and provide useful insight for the application of the unified approach. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 534 KW - coastal flood damage KW - sea-level rise KW - of-the-art KW - sensitivity-analysis KW - natural hazards KW - storm damage KW - model KW - wind KW - vulnerability KW - buildings Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410184 SN - 1866-8372 IS - 534 ER - TY - GEN A1 - Frieler, Katja A1 - Mengel, Matthias A1 - Levermann, Anders T1 - Delaying future sea-level rise by storing water in Antarctica T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Even if greenhouse gas emissions were stopped today, sea level would continue to rise for centuries, with the long-term sea-level commitment of a 2 degrees C warmer world significantly exceeding 2 m. In view of the potential implications for coastal populations and ecosystems worldwide, we investigate, from an ice-dynamic perspective, the possibility of delaying sea-level rise by pumping ocean water onto the surface of the Antarctic ice sheet. We find that due to wave propagation ice is discharged much faster back into the ocean than would be expected from a pure advection with surface velocities. The delay time depends strongly on the distance from the coastline at which the additional mass is placed and less strongly on the rate of sea-level rise that is mitigated. A millennium-scale storage of at least 80% of the additional ice requires placing it at a distance of at least 700 km from the coastline. The pumping energy required to elevate the potential energy of ocean water to mitigate the currently observed 3 mmyr(-1) will exceed 7% of the current global primary energy supply. At the same time, the approach offers a comprehensive protection for entire coastlines particularly including regions that cannot be protected by dikes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 533 KW - carbon-dioxide emissions KW - ice-sheet KW - climate-change KW - model KW - collapse KW - commitment KW - Greenland KW - discharge KW - project KW - surface Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410234 SN - 1866-8372 IS - 533 ER - TY - GEN A1 - Kuik, Friderike A1 - Lauer, Axel A1 - Churkina, Galina A1 - Denier Van der Gon, Hugo Anne Cornelis A1 - Fenner, Daniel A1 - Mar, Kathleen A. A1 - Butler, Tim M. T1 - Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1 BT - sensitivity to resolution of model grid and input data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin-Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin-Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15, 3 and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km x 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run with the settings described above. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily 8 h mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols. NOx (NO + NO2) concentrations are simulated reasonably well on average, but nighttime concentrations are overestimated due to the model's underestimation of the mixing layer height, and urban daytime concentrations are underestimated. The daytime underestimation is improved when using downscaled, and thus locally higher emissions, suggesting that part of this bias is due to deficiencies in the emission input data and their resolution. The results further demonstrate that a horizontal resolution of 3 km improves the results and spatial representativeness of the model compared to a horizontal resolution of 15 km. With the input data (land use classes, emissions) at the level of detail of the base run of this study, we find that a horizontal resolution of 1 km does not improve the results compared to a resolution of 3 km. However, our results suggest that a 1 km horizontal model resolution could enable a detailed simulation of local pollution patterns in the Berlin-Brandenburg region if the urban land use classes, together with the respective input parameters to the urban canopy model, are specified with a higher level of detail and if urban emissions of higher spatial resolution are used. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 531 KW - urban canopy model KW - aqmeii phase-2 KW - Mexico-City KW - Heat-Island KW - ozone KW - performance KW - transport KW - chemistry KW - meteorology KW - simulation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410131 SN - 1866-8372 IS - 531 ER - TY - GEN A1 - Levermann, Anders A1 - Winkelmann, Ricarda T1 - A simple equation for the melt elevation feedback of ice sheets T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. The rate of ice loss is highly relevant for coastal protection worldwide. The ice loss is likely to increase under future warming. Beyond a critical temperature threshold, a meltdown of the Greenland Ice Sheet is induced by the self-enforcing feedback between its lowering surface elevation and its increasing surface mass loss: the more ice that is lost, the lower the ice surface and the warmer the surface air temperature, which fosters further melting and ice loss. The computation of this rate so far relies on complex numerical models which are the appropriate tools for capturing the complexity of the problem. By contrast we aim here at gaining a conceptual understanding by deriving a purposefully simple equation for the self-enforcing feedback which is then used to estimate the melt time for different levels of warming using three observable characteristics of the ice sheet itself and its surroundings. The analysis is purely conceptual in nature. It is missing important processes like ice dynamics for it to be useful for applications to sea-level rise on centennial timescales, but if the volume loss is dominated by the feedback, the resulting logarithmic equation unifies existing numerical simulations and shows that the melt time depends strongly on the level of warming with a critical slow-down near the threshold: the median time to lose 10% of the present-day ice volume varies between about 3500 years for a temperature level of 0.5 degrees C above the threshold and 500 years for 5 degrees C. Unless future observations show a significantly higher melting sensitivity than currently observed, a complete meltdown is unlikely within the next 2000 years without significant ice-dynamical contributions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 529 KW - sea-level rise KW - mass-balance KW - climate-change KW - Greenland KW - model KW - glacier KW - projections KW - dynamics KW - impact KW - 21st-Century Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409834 SN - 1866-8372 IS - 529 ER - TY - GEN A1 - Langerwisch, F. A1 - Walz, Ariane A1 - Rammig, A. A1 - Tietjen, B. A1 - Thonicke, Kirsten A1 - Cramer, Wolfgang T1 - Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20% in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin, independent of the SRES scenario. The export of carbon to the atmosphere increases as well, with an average of about 30 %. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9% (SRES A1B) or increase by about 9.1% (SRES A2). Such changes in the terrigenous-riverine system could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean. Changes in riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean lead to changes in the supply of organic material that acts as a food source in the Atlantic. On larger scales the increased outgassing of CO2 could turn the Amazon basin from a sink of carbon to a considerable source. Therefore, we propose that the coupling of terrestrial and riverine carbon budgets should be included in subsequent analysis of the future regional carbon budget. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 526 KW - global vegetation model KW - Amazon-River KW - organic-matter KW - seed dispersal KW - Atlantic-Ocean KW - water-balance KW - forest KW - CO2 KW - wetlands KW - system Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410177 SN - 1866-8372 IS - 526 ER -