TY - JOUR A1 - Gerhard, Reimund A1 - Kacprzyk, Ryszard T1 - Paul Böning - early electret researcher in Shanghai and Wroclaw (1922-1945) JF - IEEE transactions on dielectrics and electrical insulation N2 - The scientific career and the research activities of Paul Boening, especially during his tenures at Tongji University in Shanghai (Woosung Campus, 1922-1936) and the Technical University of Wroclaw (TH Breslau, 1936-1945), are briefly reviewed. In particular, Boening's pioneering investigations in the area of electrets and space charge in dielectrics are emphasized. We attempt to shed some light on the significant achievements of a virtually unknown contributor to the early history of electrets and of space-charge research and high-voltage engineering, during the 1920s and 1930s. It should be noted that dielectrics research was a truly international endeavor already at that time. KW - dielectrics KW - electrets KW - electrostatic KW - experiments KW - (high-)voltage measurements KW - space charge Y1 - 2022 U6 - https://doi.org/10.1109/TDEI.2022.3168372 SN - 1070-9878 SN - 1558-4135 VL - 29 IS - 3 SP - 853 EP - 858 PB - Institute of Electrical and Electronics Engineers CY - New York, NY ER - TY - JOUR A1 - Gerlach, Marius A1 - Preitschopf, Tobias A1 - Karaev, Emil A1 - Quitian-Lara, Heidy Mayerly A1 - Mayer, Dennis A1 - Bozek, John A1 - Fischer, Ingo A1 - Fink, Reinhold F. T1 - Auger electron spectroscopy of fulminic acid, HCNO BT - an experimental and theoretical study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - HCNO is a molecule of considerable astrochemical interest as a precursor to prebiotic molecules. It is synthesized by preparative pyrolysis and is unstable at room temperature. Here, we investigate its spectroscopy in the soft X-ray regime at the C 1s, N 1s and O 1s edges. All 1s ionization energies are reported and X-ray absorption spectra reveal the transitions from the 1s to the pi* state. Resonant and normal Auger electron spectra for the decay of the core hole states are recorded in a hemispherical analyzer. An assignment of the experimental spectra is provided with the aid of theoretical counterparts. The latter are using a valence configuration interaction representation of the intermediate and final state energies and wavefunctions, the one-center approximation for transition rates and band shapes according to the moment theory. The computed spectra are in very good agreement with the experimental data and most of the relevant bands are assigned. Additionally, we present a simple approach to estimate relative Auger transition rates on the basis of a minimal basis representation of the molecular orbitals. We demonstrate that this provides a qualitatively good and reliable estimate for several signals in the normal and resonant Auger electron spectra which have significantly different intensities in the decay of the three core holes. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp02104h SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 25 SP - 15217 EP - 15229 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Gieg, Henrique A1 - Schianchi, Federico A1 - Dietrich, Tim A1 - Ujevic, Maximiliano T1 - Incorporating a Radiative Hydrodynamics Scheme in the Numerical-Relativity Code BAM JF - Universe : open access journal N2 - To study binary neutron star systems and to interpret observational data such as gravitational-wave and kilonova signals, one needs an accurate description of the processes that take place during the final stages of the coalescence, for example, through numerical-relativity simulations. In this work, we present an updated version of the numerical-relativity code BAM in order to incorporate nuclear-theory-based equations of state and a simple description of neutrino interactions through a neutrino leakage scheme. Different test simulations, for stars undergoing a neutrino-induced gravitational collapse and for binary neutron stars systems, validate our new implementation. For the binary neutron stars systems, we show that we can evolve stably and accurately distinct microphysical models employing the different equations of state: SFHo, DD2, and the hyperonic BHB Lambda phi. Overall, our test simulations have good agreement with those reported in the literature. KW - numerical relativity KW - binary neutron stars KW - neutrinos KW - leakage scheme Y1 - 2022 U6 - https://doi.org/10.3390/universe8070370 SN - 2218-1997 VL - 8 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Grebenkov, Denis S. T1 - An encounter-based approach for restricted diffusion with a gradient drift JF - Journal of physics : A, Mathematical and theoretical N2 - We develop an encounter-based approach for describing restricted diffusion with a gradient drift toward a partially reactive boundary. For this purpose, we introduce an extension of the Dirichlet-to-Neumann operator and use its eigenbasis to derive a spectral decomposition for the full propagator, i.e. the joint probability density function for the particle position and its boundary local time. This is the central quantity that determines various characteristics of diffusion-influenced reactions such as conventional propagators, survival probability, first-passage time distribution, boundary local time distribution, and reaction rate. As an illustration, we investigate the impact of a constant drift onto the boundary local time for restricted diffusion on an interval. More generally, this approach accesses how external forces may influence the statistics of encounters of a diffusing particle with the reactive boundary. KW - boundary local time KW - reflected Brownian motion KW - diffusion-influenced KW - reactions KW - surface reactivity KW - Robin boundary condition KW - Heterogeneous KW - catalysis Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac411a SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Kumar, Aanjaneya T1 - First-passage times of multiple diffusing particles with reversible target-binding kinetics JF - Journal of physics : A, Mathematical and theoretical N2 - We investigate a class of diffusion-controlled reactions that are initiated at the time instance when a prescribed number K among N particles independently diffusing in a solvent are simultaneously bound to a target region. In the irreversible target-binding setting, the particles that bind to the target stay there forever, and the reaction time is the Kth fastest first-passage time to the target, whose distribution is well-known. In turn, reversible binding, which is common for most applications, renders theoretical analysis much more challenging and drastically changes the distribution of reaction times. We develop a renewal-based approach to derive an approximate solution for the probability density of the reaction time. This approximation turns out to be remarkably accurate for a broad range of parameters. We also analyze the dependence of the mean reaction time or, equivalently, the inverse reaction rate, on the main parameters such as K, N, and binding/unbinding constants. Some biophysical applications and further perspectives are briefly discussed. KW - first-passage time KW - diffusion-controlled reactions KW - reversible binding KW - extreme statistics Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac7e91 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 32 PB - IOP Publ. CY - Bristol ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Search efficiency in the Adam-Delbruck reduction-of-dimensionality scenario versus direct diffusive search JF - New journal of physics : the open-access journal for physics N2 - The time instant-the first-passage time (FPT)-when a diffusive particle (e.g., a ligand such as oxygen or a signalling protein) for the first time reaches an immobile target located on the surface of a bounded three-dimensional domain (e.g., a hemoglobin molecule or the cellular nucleus) is a decisive characteristic time-scale in diverse biophysical and biochemical processes, as well as in intermediate stages of various inter- and intra-cellular signal transduction pathways. Adam and Delbruck put forth the reduction-of-dimensionality concept, according to which a ligand first binds non-specifically to any point of the surface on which the target is placed and then diffuses along this surface until it locates the target. In this work, we analyse the efficiency of such a scenario and confront it with the efficiency of a direct search process, in which the target is approached directly from the bulk and not aided by surface diffusion. We consider two situations: (i) a single ligand is launched from a fixed or a random position and searches for the target, and (ii) the case of 'amplified' signals when N ligands start either from the same point or from random positions, and the search terminates when the fastest of them arrives to the target. For such settings, we go beyond the conventional analyses, which compare only the mean values of the corresponding FPTs. Instead, we calculate the full probability density function of FPTs for both scenarios and study its integral characteristic-the 'survival' probability of a target up to time t. On this basis, we examine how the efficiencies of both scenarios are controlled by a variety of parameters and single out realistic conditions in which the reduction-of-dimensionality scenario outperforms the direct search. KW - first-passage times KW - Adam-Delbruck scenario KW - dimensional reduction KW - bulk KW - and surface diffusion Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac8824 SN - 1367-2630 VL - 24 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Griggio, Massimo A1 - Bedin, Luigi R. A1 - Raddi, Roberto A1 - Reindl, Nicole A1 - Tomasella, Lina A1 - Scalco, M. A1 - Salaris, M. A1 - Cassisi, S. A1 - Ochner, P. A1 - Ciroi, S. A1 - Rosati, P. A1 - Nardiello, Domenico A1 - Anderson, J. A1 - Libralato, Mattia A1 - Bellini, A. A1 - Vallenari, A. A1 - Spina, L. A1 - Pedani, M. T1 - Astro-photometric study of M37 with Gaia and wide-field ugi-imaging JF - Monthly notices of the Royal Astronomical Society N2 - We present an astrometric and photometric wide-field study of the Galactic open star cluster M37 (NGC 2099). The studied field was observed with ground-based images covering a region of about four square degrees in the Sloan-like filters ugi. We exploited the Gaia catalogue to calibrate the geometric distortion of the large field mosaics, developing software routines that can be also applied to other wide-field instruments. The data are used to identify the hottest white dwarf (WD) member candidates of M37. Thanks to the Gaia EDR3 exquisite astrometry we identified seven such WD candidates, one of which, besides being a high-probability astrometric member, is the putative central star of a planetary nebula. To our knowledge, this is a unique object in an open cluster, and we have obtained follow-up low-resolution spectra that are used for a qualitative characterization of this young WD. Finally, we publicly release a three-colour atlas and a catalogue of the sources in the field of view, which represents a complement of existing material. KW - catalogues KW - white dwarfs KW - open clusters and associations: individual: KW - M37 (NGC2099) Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1920 SN - 0035-8711 SN - 1365-2966 VL - 515 IS - 2 SP - 1841 EP - 1853 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Zhang, Jiahuan A1 - Pena-Camargo, Francisco A1 - Sveinbjornsson, Kari A1 - Zu, Fengshuo A1 - Menzel, Dorothee A1 - Warby, Jonathan A1 - Li, Jinzhao A1 - Koch, Norbert A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Albrecht, Steve T1 - Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells JF - Solar RRL N2 - Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO-2PACz hole-transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. KW - CsPbI2Br KW - efficiency potentials KW - inorganic perovskites KW - photoluminescence KW - solar cells KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/solr.202200690 SN - 2367-198X VL - 6 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guggenberger, Tobias A1 - Chechkin, Aleksei A1 - Metzler, Ralf T1 - Absence of stationary states and non-Boltzmann distributions of fractional Brownian motion in shallow external potentials JF - New journal of physics : the open-access journal for physics N2 - We study the diffusive motion of a particle in a subharmonic potential of the form U(x) = |x|( c ) (0 < c < 2) driven by long-range correlated, stationary fractional Gaussian noise xi ( alpha )(t) with 0 < alpha <= 2. In the absence of the potential the particle exhibits free fractional Brownian motion with anomalous diffusion exponent alpha. While for an harmonic external potential the dynamics converges to a Gaussian stationary state, from extensive numerical analysis we here demonstrate that stationary states for shallower than harmonic potentials exist only as long as the relation c > 2(1 - 1/alpha) holds. We analyse the motion in terms of the mean squared displacement and (when it exists) the stationary probability density function. Moreover we discuss analogies of non-stationarity of Levy flights in shallow external potentials. KW - diffusion KW - Boltzmann distribution KW - fractional Brownian motion Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac7b3c SN - 1367-2630 VL - 24 IS - 7 PB - Dt. Physikalische Ges. CY - [Bad Honnef] ER - TY - JOUR A1 - Guo, Yingjie A1 - Ni, Binbin A1 - Fu, Song A1 - Wang, Dedong A1 - Shprits, Yuri Y. A1 - Zhelavskaya, Irina A1 - Feng, Minghang A1 - Guo, Deyu T1 - Identification of controlling geomagnetic and solar wind factors for magnetospheric chorus intensity using feature selection techniques JF - Journal of geophysical research : A, Space physics N2 - Using over-5-year EMFISIS wave measurements from Van Allen Probes, we present a detailed survey to identify the controlling factors among the geomagnetic indices and solar wind parameters for the 1-min root mean square amplitudes of lower band chorus (LBC) and upper band chorus (UBC). A set of important features are automatically determined by feature selection techniques, namely, Random Forest and Maximum Relevancy Minimum Redundancy. Our analysis results indicate the AE index with zero-time-delay dominates the intensity evolution of LBC and UBC, consistent with the evidence that chorus waves prefer to occur and amplify during enhanced substorm periods. Regarding solar wind parameters, solar wind speed and IMF B-z are identified as the controlling factors for chorus wave intensity. Using the combination of all these important features, a predictive neural network model of chorus wave intensity is established to reconstruct the temporal variations of chorus wave intensity, for which application of Random Forest produces the overall best performance. Plain Language Summary Whistler mode chorus waves are electromagnetic waves observed in the low-density region near the geomagnetic equator outside the plasmapause. The dynamics of Earth's radiation belts are largely influenced by chorus waves owing to their dual contributions to both radiation belt electron acceleration and loss. In this study, we use feature selection techniques to identify the controlling geomagnetic and solar wind factors for magnetospheric chorus waves. Feature selection techniques implement the processes which can select the features most influential to the output. In this study, the inputs are geomagnetic indices and solar wind parameters and the output is the chorus wave intensity. The results indicate that AE index with zerotime delay dominates the chorus wave intensity. Furthermore, solar wind speed and IMF B-z are identified as the most important solar wind drivers for chorus wave intensity. On basis of the combination of all these important geomagnetic and solar wind controlling factors, we develop a neural network model of chorus wave intensity, and find that the model with the inputs identified using the Random Forest method produces the overall best performance. Y1 - 2021 U6 - https://doi.org/10.1029/2021JA029926 SN - 2169-9380 SN - 2169-9402 VL - 127 IS - 1 PB - Wiley CY - Hoboken, NJ ER -