TY - GEN A1 - Peter, Martin G. A1 - Förster, Hans T1 - On the structure of Eumelanins : identification of constitutional patterns by solid-state NMR spectroscopy N2 - Aus dem Inhalt: Melanins are complex polyphenolic polymers. They are usually formed in nature by enzyme-catalyzed oxidative polymerization of o-diphenols. The deep black eumelanins, derived from Dopa 1 or dopamine 3, are distinguished from the yellow to brown phaeomelanins obtained from Dopa in the presence of cysteine. Characteristic of eumelanins are the indole units, which are formed from catecholamines by intramolecular addition of the amino groups to the oxidatively generated o-quinones. [...] T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 053 Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17027 ER - TY - GEN A1 - Peter, Martin G. A1 - Muiva, Lois M. A1 - Yenesew, Abiy A1 - Derese, Solomon A1 - Heydenreich, Matthias A1 - Akala, Hoseah M. A1 - Eyase, Fredrick A1 - Waters, Norman C. A1 - Mutai, Charles A1 - Keriko, Joseph M. A1 - Walsh, Douglas S. T1 - Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata N2 - From the seedpods of Tephrosia elata, a new β-hydroxydihydrochalcone named (S)-elatadihydrochalcone was isolated. In addition, the known flavonoids obovatachalcone, obovatin, obovatin methyl ether and deguelin were identified. The structures were determined on the basis of spectroscopic evidence. The crude extract and the flavonoids obtained from the seedpods of this plant showed antiplasmodial activities. The literature NMR data on β-hydroxydihydrochalcones is reviewed and the identity of some of the compounds assigned β-hydroxydihydrochalcone skeleton is questioned. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 118 KW - Tephrosia elata KW - Leguminosae KW - Seedpods KW - (S)-Elatadihydrochalcone KW - β-Hydroxydihydrochalcone Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44437 ER - TY - GEN A1 - Peter, Martin G. A1 - Yenesew, Abiy A1 - Twinomuhwezi, Hannington A1 - Kabaru, Jacques M. A1 - Akala, Hoseah M. A1 - Kiremire, Bernard T. A1 - Heydenreich, Matthias A1 - Eyase, Fredrick A1 - Waters, Norman C. A1 - Walsh, Douglas S. T1 - Antiplasmodial and larvicidal flavonoids from Derris trifoliata N2 - From the dichloromethane-methanol (1:1) extract of the seed pods of Derris trifoliata, a new flavanone derivative (S)-lupinifolin 4´-methyl ether was isolated. In addition, the known flavonoids lupinifolin and rotenone were identified. The structures were determined on the basis of spectroscopic evidence. Lupinfolin showed moderate in vitro antiplasmodial activity against the D6 (chloroquine-sensitive) and W2 (chloroquineresistant) strains of Plasmodium falciparum. The different parts of this plant showed larvicidal activities against Aedes aegypti and rotenoids were identified as the active principles. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 121 KW - Derris trifoliata KW - Leguminosae KW - Flavanone KW - (S)-Lupinifolin 4´-methyl ether KW - Lupinifolin Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44614 ER - TY - THES A1 - Phung, Thi Thuy Nga T1 - Defect chemistry in halide perovskites BT - material characterisation and device integration N2 - Metallhalogenid-Perowskite haben sich aufgrund ihrer hervorragenden optoelektronischen Eigenschaften zu einer attraktiven Materialklasse für die Photovoltaikindustrie entwickelt. Die Langzeitstabilität ist jedoch noch immer ein Hindernis für die industrielle Realisierung dieser Materialklasse. Zunehmend zeigen sich Hinweise dafür, dass intrinsische Defekte im Perowskit die Material-Degradation fördern. Das Verständnis der Defekte im Perowskit ist wichtig, um seine Stabilität und optoelektronische Qualität weiter zu verbessern. Diese Dissertation konzentriert sich daher auf das Thema Defektchemie im Perowskit. Der erste Teil der Dissertation gibt einen kurzen Überblick über die Defekteigenschaften von Halogenid-Perowskiten. Anschließend zeigt der zweite Teil, dass das Dotieren von Methylammoniumbleiiodid mit einer kleinen Menge von Erdalkalimetallen (Sr und Mg) ein höherwertiges, weniger fehlerhaftes Material erzeugt, was zu hohen Leerlaufspannungen sowohl in der n-i-p als auch in der p-i-n Architektur von Solarzellen führt. Es wurde beobachtet, dass die Dotierung in zwei Domänen stattfindet: eine niedrige Dotierungskonzentration führt zum Einschluss der entsprechenden Elemente in das Kristallgitter ermöglicht, während eine hohe Dotierungskonzentration zu einer Phasentrennung führt. Das Material kann im Niedrigdotierungsbereich mehr n-dotiert sein, während es im Hochdotierungsbereich weniger n-dotiert ist. Die Schwelle dieser beiden Regime hängt von der Atomgröße der Dotierelemente ab. Der nächste Teil der Dissertation untersucht die photoinduzierte Degradation von Methylammonium-Bleiiodid. Dieser Abbaumechanismus hängt eng mit der Bildung und Migration von defekten zusammen. Nach der Bildung können sich diese in Abhängigkeit von der Defektdichte und ihrer Verteilung bewegen. Demnach kann eine hohe Defektdichte wie an den Korngrenzen eines Perowskitfilms die Beweglichkeit von ionischen Punktdefekten hemmen. Diese Erkenntnis ließe sich auf das zukünftige Materialdesign in der Photovoltaikindustrie anwenden, da die Perowskit-Solarzellen normalerweise einen polykristallinen Dünnfilm mit hoher Korngrenzendichte verwenden. Die abschließende Studie, die in dieser Dissertation vorgestellt wird, konzentriert sich auf die Stabilität der neuesten „dreifach-kationen“ Perowskit-basierten Solarzellen unter dem Einfluss einer permanent angelegten elektrischen Spannung. Eine längere Betriebsdauer (mehr als drei Stunden permanente Spannung) fördert die Amorphisierung im Halogenid-Perowskiten. Es wird hierbei vermutet, dass sich eine amorphe Phase an den Grenzflächen bildet, insbesondere zwischen der lochselektiven Schicht und dem Perowskit. Diese amorphe Phase hemmt den Ladungstransport und beeinträchtigt die Leistung der Perowskit-Solarzelle erheblich. Sobald jedoch keine Spannung mehr anliegt können sich die Perowskitschichten im Dunkeln bereits nach einer kurzen Pause regenerieren. Die Amorphisierung wird auf die Migration von ionischen Fehlordnungen zurückgeführt, höchstwahrscheinlich auf die Migration von Halogeniden. Dieser Ansatz zeigt ein neues Verständnis des Abbau-Mechanismus in Perowskit-Solarzellen unter Betriebsbedingungen. N2 - Metal halide perovskites have merged as an attractive class of materials for photovoltaic applications due to their excellent optoelectronic properties. However, the long term stability is a roadblock for this class of material’s industrial pathway. Increasing evidence shows that intrinsic defects in perovskite promote material degradation. Consequently, understanding defect behaviours in perovskite materials is essential to further improve device stability and performance. This dissertation, hence, focuses on the topic of defect chemistry in halide perovskites. The first part of the dissertation gives a brief overview of the defect properties in halide perovskite. Subsequently, the second part shows that doping methylammonium lead iodide with a small amount of alkaline earth metals (Sr and Mg) creates a higher quality, less defective material resulted in high open circuit voltages in both n-i-p and p-i-n architecture. It has been found that the mechanism of doping has two distinct regimes in which a low doping concentration enables the inclusion of the dopants into the lattice whereas higher doping concentrations lead to phase segregation. The material can be more n-doped in the low doping regime while being less n-doped in the high doping regime. The threshold of these two regimes is based on the atomic size of the dopants. The next part of the dissertation examines the photo-induced degradation in methylammonium lead iodide. This degradation mechanism links closely to the formation and migration of ionic defects. After they are formed, these ionic defects can migrate, however, not freely depending on the defect concentration and their distribution. In fact, a highly concentrated defect region such as the grain boundaries can inhibit the migration of ionic defects. This has implications for material design as perovskite solar cells normally employ a polycrystalline thin-film which has a high density of grain boundary. The final study presented in this PhD dissertation focuses on the stability of the state-of-the-art triple cation perovskite-based solar devices under external bias. Prolonged bias (more than three hours) is found to promote amorphization in halide perovskite. The amorphous phase is suspected to accumulate at the interfaces especially between the hole selective layer and perovskite. This amorphous phase inhibits the charge collection and severely affects the device performance. Nonetheless, the devices can recover after resting without bias in the dark. This amorphization is attributed to ionic defect migration most likely halides. This provides a new understanding of the potential degradation mechanisms in perovskite solar cells under operational conditions. KW - halide perovskite KW - solar cells KW - defect chemistry KW - ionic defects KW - Defektchemie KW - Halogenid-Perowskite KW - Defekte KW - Solarzellen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476529 ER - TY - GEN A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Höseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Bürkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes BT - genotoxicity and DNA-damage response N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 171 KW - adduct formation KW - cell-death KW - exposure KW - manganese KW - methylmercury KW - neurodegenerative diseases KW - neurotoxicity KW - poly(ADP-ribose) polymerase-1 KW - repair KW - thimerosal Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74379 SP - 662 EP - 671 ER - TY - THES A1 - Piluso, Susanna T1 - Design of biopolymer-based networks with defined molecular architecture T1 - Design biopolymer-basierter Netzwerke mit definierter molekularer Architektur N2 - In this work, the synthesis of biopolymer-based hydrogel networks with defined architecture is presented. In order to obtain materials with defined properties, the chemoselective copper-catalyzed azide-alkyne cycloaddition (or Click Chemistry) was used for the synthesis of gelatin-based hydrogels. Alkyne-functionalized gelatin was reacted with four different diazide crosslinkers above its sol-gel transition to suppress the formation of triple helices. By variation of the crosslinking density and the crosslinker flexibility, the swelling (Q: 150-470 vol.-%;) and the Young’s and shear moduli (E: 50 kPa - 635 kPa, G’: 0.1 kPa - 16 kPa) could be tuned in the kPa range. In order to understand the network structure, a method based on the labelling of free functional groups within the hydrogel was developed. Gelatin-based hydrogels were incubated with alkyne-functionalized fluorescein to detect the free azide groups, resulting from the formation of dangling chains. Gelatin hydrogels were also incubated with azido-functionalized fluorescein to check the presence of alkyne groups available for the attachment of bioactive molecules. By using confocal laser scanning microscopy and fluorescence spectroscopy, the amount of crosslinking, grafting and free alkyne groups could be determined. Dangling chains were observed in samples prepared by using an excess of crosslinker and also when using equimolar amounts of alkyne:azide. In the latter case the amount of dangling chains was affected by the crosslinker structure. Specifically, 0.1% of dangling chains were found using 4,4’-diazido-2,2’-stilbene-disulfonic acid as cosslinker, 0.06% with 1,8-diazidooctane, 0.05% with 1,12-diazidododecane and 0.022 % with PEG-diazide. This observation could be explained considering the structure of the crosslinkers. During network formation, the movements of the gelatin chains are restricted due to the formation of covalent netpoints. A further crosslinking will be possible only in the case of crosslinker that are flexible and long enough to reach another chain. The method used to obtain defined gelatin-based hydrogels enabled also the synthesis of hyaluronic acid-based hydrogels with tailorable properties. Alkyne-functionalized hyaluronic acid was crosslinked with three different linkers having two terminal azide functionalities. By variation of the crosslinking density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-3 kPa have been prepared. The variation of the crosslinking density and crosslinker type had furthermore an influence also on the hydrolytic and enzymatic degradation of gelatin-based hydrogels. Hydrogels with a low crosslinker amount experienced a faster decrease in mass loss and elastic modulus compared to hydrogels with higher crosslinker content. Moreover, the structure of the crosslinker had a strong influence on the enzymatic degradation. Hydrogels containing a crosslinker with a rigid structure were much more resistant to enzymatic degradation than hydrogels containing a flexible crosslinker. During hydrolytic degradation, the hydrogel became softer while maintaining the same outer dimensions. These observations are in agreement with a bulk degradation mechanism, while the decrease in size of the hydrogels during enzymatic degradation suggested a surface erosion mechanism. Because of the use of small amount of crosslinker (0.002 mol.% 0.02 mol.%) the networks synthesized can still be defined as biopolymer-based hydrogels. However, they contain a small percentage of synthetic residues. Alternatively, a possible method to obtain biopolymer-based telechelics, which could be used as crosslinkers, was investigated. Gelatin-based fragments with defined molecular weight were obtained by controlled degradation of gelatin with hydroxylamine, due to its specific action on asparaginyl-glycine bonds. The reaction of gelatin with hydroxylamine resulted in fragments with molecular weights of 15, 25, 37, and 50 kDa (determined by SDS-PAGE) independently of the reaction time and conditions. Each of these fragments could be potentially used for the synthesis of hydrogels in which all components are biopolymer-based materials. N2 - In dieser Arbeit wird die Synthese Biopolymer-basierter Hydrogelnetzwerke mit definierter Architektur beschrieben. Um Materialien mit definierten und einstellbaren Eigenschaften zu erhalten, wurde die chemoselektive Kupferkatalysierte Azid-Alkin-Cycloadditionsreaktion (auch als Click-Chemie bezeichnet) für die Synthese Gelatine-basierter Netzwerke eingesetzt. Alkin-funktionalisierte Gelatine wurde mit vier verschiedenen Diazid-Quervernetzern oberhalb der Gel-Sol-Übergangstemperatur umgesetzt, um die Formierung tripelhelikaler Bereiche durch Gelatineketten zu unterdrücken. Durch Variation der Menge an Quervernetzer (und damit der Netzdichte) sowie der Länge und Flexibilität der Quervernetzer konnten u.a. die Quellung (Q: 150-470 vol.-%) sowie der Young’s - und Schermodul im kPa Bereich eingestellt werden (E: 50 kPa - 635 kPa, G’: 0.1 kPa - 16 kPa). Um die Netzwerkarchitektur zu verstehen, wurde eine Methode basierend auf dem Labeln unreagierter Azid- und Alkingruppen im Hydrogel entwickelt. Die Gelatine-basierten Hydrogele wurden mit Alkin-funktionalisiertem Fluorescein umgesetzt, um freie Azidgruppen zu detektieren, die bei einem Grafting entstehen. Darüber hinaus wurden die Hydrogele mit Azid-funktionalisiertem Fluorescein reagiert, um die Menge an freien Alkingruppen zu bestimmen, die zudem potentiell für die Anbindung bioaktiver Moleküle geeignet sind. Quervernetzung, Grafting, und die Anzahl freier Alkingruppen konnten dann mit Hilfe der konfokalen Laser Scanning Mikroskopie und der Fluoreszenzmikroskopie qualitativ und quantitativ nachgewiesen werden. Gegraftete Ketten wurden in Systemen nachgewiesen, die mit einem Überschuss an Quervernetzer hergestellt wurden, entstanden aber auch beim Einsatz äquimolarer Mengen Alkin- und Azidgruppen. Im letzteren Fall wurde in Abhängigkeit von der Struktur des Diazids unterschiedliche Anteile gegrafteter Ketten festgestellt. 0.1 mol-% von gegrafteten Ketten wurden für 4,4’-Diazido-2,2’-stilbendisulfonsäure gefunden, 0.06 mol-% für 1,8-Diazidooktan, 0.05 mol% für 1,12-diazidododecan und 0.022 mol-% für PEG-Diazid. Diese Beobachtung kann durch die unterschiedliche Flexibilität der Vernetzer erklärt werden. Während der Netzwerkbildung werden die Bewegungen der Gelatineketten eingeschränkt, so dass kovalente Netzpunkte nur erhalten werden können, wenn der Vernetzer lang und flexibel genug ist, um eine andere Alkingruppe zu erreichen. Die Strategie zur Synthese von Biopolymer-basierten Hydrogelen mit einstellbaren Eigenschaften wurde von Gelatine- auf Hyaluronsäure-basierte Gele übertragen. Alkin-funktionalisierte Hyaluronäure wurde mit drei verschiedenen Diaziden quervernetzt, wobei Menge, Länge, und Flexibilität des Quervernetzers variiert wurden. In dieser Weise wurden sehr weiche Hydrogele mit E-Moduli im Bereich von 0.5-3 kPa hergestellt. Die Variation der Vernetzungsdichte und des Vernetzertyps beeinflusste weiterhin den hydrolytischen und enzymatischen Abbau der Hydrogele. Hydrogele mit einem geringerem Anteil an Quervernetzer wurden schneller abgebaut als solche mit einem höheren Quervernetzeranteil. Darüber hinaus konnte gezeigt werden, dass Hydrogele mit Quervernetzern mit einer rigiden Struktur deutlich langsamer degradierten als Hydrogele mit flexibleren Quervernetzern. Während des hydrolytischen Abbau wurden die Materialien weicher, behielten aber ihre Form bei, was mit einem Bulk-Abbau-Modell übereinstimmt. Während des enzymatischen Abbaus hingegen änderten sich die Materialeigenschaften kaum, jedoch wurden die Proben kleiner. Diese Beobachtung stimmt mit einem Oberflächenabbaumechanismus überein. Da in allen vorgestellten Systemen nur eine kleine Menge synthetischer Vernetzer eingesetzt wurde (0.002 – 0.02 mol%), können die Materialien noch als Biopolymer-basierte Materialien klassifiziert werden. Jedoch enthalten die Materialien synthetische Abschnitte. In Zukunft könnte es interessant sein, einen Zugang zu Materialien zu haben, die ausschließlich aus Biopolymeren aufgebaut sind. Daher wurde der Zugang zu Biopolymer basierten Telechelen untersucht, die potentiell als Vernetzer dienen können. Dazu wurden durch die kontrollierte Spaltung von Gelatine mit Hydroxylamin Gelatinefragmente mit definiertem Molekulargewicht hergestellt. Hydroxalamin reagiert unter Spaltung mit der Amidbindung zwischen Asparagin und Glycin, wobei Aspartylhydroxamate und Aminoendgruppen entstehen. Die Reaktion von Gelatine mit Hydroxylamin ergab Fragmente mit Molekulargewichten von 15, 25, 37, und 50 kDa (bestimmt mit SDS-PAGE), und die Formierung dieser Fragmente war unabhängig von den weiteren Reaktionsbedingungen und der Reaktionszeit. Jedes dieser Fragmente kann potentiell für die Synthese von Hydrogelen eingesetzt werden, die ausschließlich aus Biopolymeren bestehen. KW - Klickchemie KW - Gelatine KW - Hyaluronsäure KW - Abbau KW - Kollagenase KW - Click Chemistry KW - Gelatin KW - Hyaluronic acid KW - Degradation KW - Collagenase Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59865 ER - TY - GEN A1 - Plehn, Thomas A1 - Megow, Jörg A1 - May, Volkhard T1 - Concerted charge and energy transfer processes in a highly flexible fullerene–dye system BT - a mixed quantum–classical study N2 - Photoinduced excitation energy transfer and accompanying charge separation are elucidated for a supramolecular system of a single fullerene covalently linked to six pyropheophorbide-a dye molecules. Molecular dynamics simulations are performed to gain an atomistic picture of the architecture and the surrounding solvent. Excitation energy transfer among the dye molecules and electron transfer from the excited dyes to the fullerene are described by a mixed quantum–classical version of the Förster rate and the semiclassical Marcus rate, respectively. The mean characteristic time of energy redistribution lies in the range of 10 ps, while electron transfer proceeds within 150 ps. In between, on a 20 to 50 ps time-scale, conformational changes take place in the system. This temporal hierarchy of processes guarantees efficient charge separation, if the structure is exposed to a solvent. The fast energy transfer can adopt the dye excitation to the actual conformation. In this sense, the probability to achieve charge separation is large enough since any dominance of unfavorable conformations that exhibit a large dye–fullerene distance is circumvented. And the slow electron transfer may realize an averaging with respect to different conformations. To confirm the reliability of our computations, ensemble measurements on the charge separation dynamics are simulated and a very good agreement with the experimental data is obtained. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 279 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98791 ER - TY - THES A1 - Popovic, Jelena T1 - Novel lithium iron phosphate materials for lithium-ion batteries T1 - Neuartige Lithium-Eisen-Phosphat-Materialien für Lithium-Ionen-Batterien N2 - Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94% of the theoretically known capacity. N2 - Konventionelle Energiequellen sind weder nachwachsend und daher nachhaltig nutzbar, noch weiterhin langfristig verfügbar. Sie benötigen Millionen von Jahren um gebildet zu werden und verursachen in ihrer Nutzung negative Umwelteinflüsse wie starke Treibhausgasemissionen. Im 21sten Jahrhundert ist es unser Ziel nachhaltige und umweltfreundliche, sowie möglichst preisgünstige Energiequellen zu erschließen und nutzen. Neuartige Technologien assoziiert mit transportablen Energiespeichersystemen spielen dabei in unserer mobilen Welt eine große Rolle. Li-Ionen Batterien sind in der Lage wiederholt Energie aus entsprechenden Prozessen nutzbar zu machen, indem sie reversibel chemische in elektrische Energie umwandeln. Die Leistung von Li-Ionen Batterien hängen sehr stark von den verwendeten Funktionsmaterialien ab. Aktuell verwendete Elektrodenmaterialien haben hohe Produktionskosten, verfügen über limitierte Energiespeichekapazitäten und sind teilweise gefährlich in der Nutzung für größere Bauteile. Dies beschränkt die Anwendungsmöglichkeiten der Technologie insbesondere im Gebiet der hybriden Fahrzeugantriebe. Die vorliegende Dissertation beschreibt bedeutende Fortschritte in der Entwicklung von LiFePO4 als Kathodenmaterial für Li-Ionen Batterien. Mithilfe einfacher Syntheseprozeduren konnten eine vollkommen neue Morphologie (mesokristallines LiFePo4) sowie ein nanostrukturiertes Material mit exzellenten elektrochemischen Eigenschaften hergestellt werden. Die neu entwickelten Verfahren zur Synthese von LiFePo4 sind einschrittig und bei signifikant niedrigeren Temperaturen im Vergleich zu konventionellen Methoden. Die Verwendung von preisgünstigen und umweltfreundlichen Ausgangsstoffen stellt einen grünen Herstellungsweg für die large scale Synthese dar. Mittels des neuen Synthesekonzepts konnte meso- und nanostrukturiertes LiFe PO4 generiert werden. Die Methode ist allerdings auch auf andere phospho-olivin Materialien (LiCoPO4, LiMnPO4) anwendbar. Batterietests der besten Materialien (nanostrukturiertes LiFePO4 mit Kohlenstoffnanobeschichtung) ergeben eine mögliche Energiespeicherung von 94%. KW - Li-Ionen-Akkus KW - Kathode KW - LiFePO4 KW - Mesokristalle KW - Nanopartikel KW - Li-ion batteries KW - cathode KW - LiFePO4 KW - mesocrystals KW - nanoparticles Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-54591 ER - TY - GEN A1 - Prestel, Andreas A1 - Möller, Heiko Michael T1 - Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides N2 - The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 218 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89658 SP - 701 EP - 704 ER - TY - THES A1 - Prinz, Julia T1 - DNA origami substrates as a versatile tool for surface-enhanced Raman scattering (SERS) T1 - DNA Origami-Substrate als ein vielseitiges Werkzeug für die oberflächenverstärkte Raman-Streuung (SERS) N2 - Surface-enhanced Raman scattering (SERS) is a promising tool to obtain rich chemical information about analytes at trace levels. However, in order to perform selective experiments on individual molecules, two fundamental requirements have to be fulfilled. On the one hand, areas with high local field enhancement, so-called “hot spots”, have to be created by positioning the supporting metal surfaces in close proximity to each other. In most cases hot spots are formed in the gap between adjacent metal nanoparticles (NPs). On the other hand, the analyte has to be positioned directly in the hot spot in order to profit from the highest signal amplification. The use of DNA origami substrates provides both, the arrangement of AuNPs with nm precision as well as the ability to bind analyte molecules at predefined positions. Consequently, the present cumulative doctoral thesis aims at the development of a novel SERS substrate based on a DNA origami template. To this end, two DNA-functionalized gold nanoparticles (AuNPs) are attached to one DNA origami substrate resulting in the formation of a AuNP dimer and thus in a hot spot within the corresponding gap. The obtained structures are characterized by correlated atomic force microscopy (AFM) and SERS imaging which allows for the combination of structural and chemical information. Initially, the proof-of principle is presented which demonstrates the potential of the novel approach. It is shown that the Raman signal of 15 nm AuNPs coated with dye-modified DNA (dye: carboxytetramethylrhodamine (TAMRA)) is significantly higher for AuNP dimers arranged on a DNA origami platform in comparison to single AuNPs. Furthermore, by attaching single TAMRA molecules in the hot spot between two 5 nm AuNPs and optimizing the size of the AuNPs by electroless gold deposition, SERS experiments at the few-molecule level are presented. The initially used DNA origami-AuNPs design is further optimized in many respects. On the one hand, larger AuNPs up to a diameter of 60 nm are used which are additionally treated with a silver enhancement solution to obtain Au-Ag-core-shell NPs. On the other hand, the arrangement of both AuNPs is altered to improve the position of the dye molecule within the hot spot as well as to decrease the gap size between the two particles. With the optimized design the detection of single dye molecules (TAMRA and cyanine 3 (Cy3)) by means of SERS is demonstrated. Quantitatively, enhancement factors up to 10^10 are estimated which is sufficiently high to detect single dye molecules. In the second part, the influence of graphene as an additional component of the SERS substrate is investigated. Graphene is a two-dimensional material with an outstanding combination of electronical, mechanical and optical properties. Here, it is demonstrated that single layer graphene (SLG) replicates the shape of underlying non-modified DNA origami substrates very well, which enables the monitoring of structural alterations by AFM imaging. In this way, it is shown that graphene encapsulation significantly increases the structural stability of bare DNA origami substrates towards mechanical force and prolonged exposure to deionized water. Furthermore, SLG is used to cover DNA origami substrates which are functionalized with a 40 nm AuNP dimer. In this way, a novel kind of hybrid material is created which exhibits several advantages compared to the analogue non-covered SERS substrates. First, the fluorescence background of dye molecules that are located in between the AuNP surface and SLG is efficiently reduced. Second, the photobleaching rate of the incorporated dye molecules is decreased up to one order of magnitude. Third, due to the increased photostability of the investigated dye molecules, the performance of polarization-dependent series measurements on individual structures is enabled. This in turn reveals extensive information about the dye molecules in the hot spot as well as about the strain induced within the graphene lattice. Although SLG can significantly influence the SERS substrate in the aforementioned ways, all those effects are strongly related to the extent of contact with the underlying AuNP dimer. N2 - Desoxyribonukleinsäure (engl. deoxyribonucleic acid (DNA)) ist nicht nur Träger der Erbinformation, sondern wird auch seit den frühen 80er Jahren als Gerüstmaterial in der Nanotechnologie verwendet. Im Jahr 2006 wurde die bis dato entwickelte DNA-Nanotechnologie durch die Erfindung der sogenannten DNA Origami-Technik weiter revolutioniert. Diese erlaubt die Konstruktion vielfältiger zwei- und dreidimensionaler Strukturen durch gezielte DNA-Selbstassemblierung. Basierend auf der grundlegenden Watson-Crick Basenpaarung innerhalb eines DNA-Doppelstrangs können die gewünschten Zielstrukturen dabei mit hoher Genauigkeit vorhergesagt werden. Neben der Entwicklung vielfältiger DNA-Konstrukte eignen sich DNA Origami-Substrate zudem hervorragend zur Bindung funktionaler Einheiten mit der Präzision im Bereich von Nanometern. Somit lassen sich beispielsweise Goldnanopartikel (AuNPs) präzise anordnen. Dies ist von höchstem Interesse im Zusammenhang mit der oberflächenverstärkten Ramanstreuung (engl. surface-enhanced Raman scattering (SERS)). SERS basiert darauf, die naturgemäß schwache Ramanstreuung eines Analyten um mehrere Größenordnungen zu verstärken, indem der Analyt nahe einer Metalloberfläche positioniert wird. Die Verstärkung der Ramanstreuung beruht hierbei hauptsächlich auf der Wechselwirkung des Analyten mit dem elektromagnetischen Feld der Metalloberfläche und kann im Zwischenraum zweier benachbarter Metallstrukturen besonders stark ausgeprägt sein. Die vorliegende kumulative Dissertation beschäftigt sich mit der Entwicklung einer DNA Origami-basierten Sensoroberfläche für die Anwendung von SERS-Experimenten. Hierbei werden jeweils zwei AuNPs in gezieltem Abstand an ein DNA Origami-Substrat gebunden und das verstärkte Ramansignal eines Analyten im Zwischenraum des AuNP-Dimers detektiert. Zunächst wird das allgemeine Prinzip in Form eines Wirksamkeitsnachweises vorgestellt, in welchem der Farbstoff Carboxytetramethylrhodamin (TAMRA) als Analyt verwendet wird. Die darauf aufbauenden Experimente zielen auf eine Verringerung der Nachweisgrenze bis hin zur Einzelmoleküldetektion ab. Im Zuge dessen werden vielseitige Optimierungsschritte durchgeführt, die die Größe, die Anordnung sowie die Ummantelung der AuNPs mit einer dünnen Silberschicht betreffen. Es wird gezeigt, dass durch die Optimierung aller Parameter die Detektion einzelner TAMRA- und Cyanin 3 (Cy3)-Moleküle mittels SERS möglich ist. Weiterhin wird Graphen, ein erst im Jahr 2004 entdecktes Material bestehend aus einer einzigen Schicht Kohlenstoffatome, als weiterer Bestandteil der untersuchten Nanostrukturen eingeführt. Graphen zeichnet sich durch eine bislang einzigartige Kombination aus optischen, elektronischen und mechanischen Eigenschaften aus und hat sich daher innerhalb kürzester Zeit zu einem vielfältigen Forschungsschwerpunkt entwickelt. In der vorliegenden Dissertation wird zunächst die erhöhte strukturelle Stabilität von Graphen bedeckten DNA Origami-Substraten im Hinblick auf mechanische Beanspruchung sowie auf die Inkubation in deionisiertem Wasser demonstriert. In weiterführenden Betrachtungen werden auch DNA Origami-Substrate, die mit AuNP-Dimeren funktionalisiert sind, mit Graphen bedeckt, und somit eine neuartige Hybridstruktur erzeugt. Es wird gezeigt, dass Graphen den Fluoreszenzuntergrund der untersuchten Farbstoffmoleküle deutlich reduziert und zusätzlich deren Photostabilität gegenüber der eintreffenden Laserstrahlung effektiv verbessert. KW - DNA origami KW - surface-enhanced Raman scattering KW - DNA nanostructures KW - graphene KW - single-molecule detection KW - DNA Origami KW - oberflächenverstärkte Raman-Streuung KW - DNA Nanostrukturen KW - Graphen KW - Einzelmoleküldetektion Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-104089 ER -