TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Günter, Christina A1 - Weber, Jens A1 - Lubahn, Susanne A1 - Taubert, Andreas T1 - Hybrid Clay - a new highly efficient adsorbent for water treatment JF - ACS sustainable chemistry & engineering N2 - New hybrid clay adsorbent based on kaolinite clay and Carica papaya seeds with improved cation exchange capacity (CEC), rate of heavy metal ion uptake, and adsorption capacity for heavy metal ions were prepared. The CEC of the new material is ca. 75 meq/100 g in spite of the unexpectedly low surface area (approximate to 19 m(2)/g). Accordingly, the average particle size of the hybrid clay adsorbent decreased from over 200 to 100 pm. The hybrid clay adsorbent is a highly efficient adsorbent for heavy metals. With an initial metal concentration of 1 mg/L, the hybrid clay adsorbent reduces the Cd2+, Ni2+, and Pb2+ concentration in aqueous solution to <= 4, <= 7 and <= 20 mu g/L, respectively, from the first minute to over 300 min using a fixed bed containing 2 g of adsorbent and a flow rate of approximate to 7 mL/min. These values are (with the exception of Pb2+) in line with the WHO permissible limits for heavy metal ions. In a cocktail solution of Cd2+, and Ni2+, the hybrid clay shows a reduced rate of uptake but an increased adsorption capacity. The CEC data suggest that the adsorption of Pb2+, Cd2+, and Ni2+ on the hybrid clay adsorbent is essentially due to ion exchange. This hybrid clay adsorbent is prepared from materials that are abundant and by a simple means that is sustainable, easily recovered from aqueous solution, nonbiodegradable (unlike numerous biosorbent), and easily regenerated and is a highly efficient alternative to activated carbon for water treatment. KW - Kaolinite KW - Hybrid clay KW - Water treatment KW - Cation exchange Capacity KW - Adsorbent KW - Kinetics Y1 - 2013 U6 - https://doi.org/10.1021/sc400051y SN - 2168-0485 VL - 1 IS - 8 SP - 966 EP - 973 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Agunbiade, Foluso O. A1 - Alfred, Moses O. A1 - Adewumi, Thompson A. A1 - Okoli, Chukwunonso P. A1 - Omorogie, Martins O. A1 - Akanbi, Moses O. A1 - Ofomaja, Augustine E. A1 - Taubert, Andreas T1 - Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water JF - Journal of Cleaner Production N2 - New hybrid clay materials with good affinity for phosphate ions were developed from a combination of biomass-Carica papaya seeds (PS) and Musa paradisiaca (Plantain peels-PP), ZnCl2 and Kaolinite clay to produce iPS-HYCA and iPP-HYCA composite adsorbents respectively. Functionalization of these adsorbents with an organosilane produced NPS-HYCA and NPP-HYCA composite adsorbents. The pH(pzc) for the adsorbents were 7.83, 6.91, 7.66 and 6.55 for iPS-HYCA, NPS-HYCA, iPP-HYCA and NPP-HYCA respectively. Using the Brouer-Sotolongo isotherm model which best predict the adsorption capacity of composites for phosphate, iPP-HYCA, iPS-HYCA, NPP-HYCA, and NPS-HYCA composite adsorbents respectively. When compared with some commercial resins, the amino-functionalized adsorbents had better adsorption capacities. Furthermore, amino-functionalized adsorbents showed improved adsorption capacity and rate of phosphate uptake (as much as 40-fold), as well as retain 94% (for NPS-HYCA) and 84.1% (for NPP-HYCA) efficiency for phosphate adsorption after 5 adsorption-desorption cycles (96 h of adsorption time with 100 mg/L of phosphate ions) as against 37.5% (for iPS-HYCA) and 35% (for iPP-HYCA) under similar conditions. In 25 min desorption of phosphate ion attained equilibrium. These new amino-functionalized hybrid clay composite adsorbents, which were prepared by a simple means that is sustainable, have potentials for the efficient capture of phosphate ions from aqueous solution. They are quickly recovered from aqueous solution, non-biodegradable (unlike many biosorbent) with potentials to replace expensive adsorbents in the future. They have the further advantage of being useful in the recovery of phosphate for use in agriculture which could positively impact the global food security programme. (C) 2017 Elsevier Ltd. All rights reserved. KW - Composite adsorbents KW - Sustainable KW - Phosphate recovery KW - Water KW - Desorption kinetics Y1 - 2017 U6 - https://doi.org/10.1016/j.jclepro.2017.06.160 SN - 0959-6526 SN - 1879-1786 VL - 164 SP - 652 EP - 663 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Ugwuja, Chidinma G. A1 - Adelowo, Olawale O. A1 - Ogunlaja, Aemere A1 - Omorogie, Martins O. A1 - Olukanni, Olumide D. A1 - Ikhimiukor, Odion O. A1 - Iermak, Ievgeniia A1 - Kolawole, Gabriel A. A1 - Günter, Christina A1 - Taubert, Andreas A1 - Bodede, Olusola A1 - Moodley, Roshila A1 - Inada, Natalia M. A1 - Camargo, Andrea S.S. de A1 - Unuabonah, Emmanuel Iyayi T1 - Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites JF - ACS applied materials & interfaces N2 - This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Arhammar, C.; Jamstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, therrnogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 x 10(7) cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries. KW - disinfection KW - nanocomposite material KW - multidrug-resistant Escherichia coli KW - water KW - reactive oxygen species Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b01212 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 28 SP - 25483 EP - 25494 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Uchida, Ryusuke A1 - Binet, Silvia A1 - Arora, Neha A1 - Jacopin, Gwenole A1 - Alotaibi, Mohammad Hayal A1 - Taubert, Andreas A1 - Zakeeruddin, Shaik Mohammed A1 - Dar, M. Ibrahim A1 - Graetzel, Michael T1 - Insights about the Absence of Rb Cation from the 3D Perovskite Lattice BT - Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance JF - Small N2 - Efficiencies >20% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10%) but amply rule out the possibility of Rb-incorporation into the MAPbI(3) (MA = CH3NH3+) lattice. Moreover, morphological studies and time-resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI(3) layers and charge-carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs-containing MAPbI(3) systems compared to the pristine MAPbI(3). Investigation including mixed halide (I/Br) and mixed cation A-cation based compositions further confirms the absence of Rb+ from the 3D-perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions. KW - cation miscibility KW - cesium cation KW - perovskite solar cells KW - rubidium cation KW - X-ray diffraction Y1 - 2018 U6 - https://doi.org/10.1002/smll.201802033 SN - 1613-6810 SN - 1613-6829 VL - 14 IS - 36 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Thiel, Kerstin A1 - Klamroth, Tillmann A1 - Strauch, Peter A1 - Taubert, Andreas T1 - On the interaction of ascorbic acid and the tetrachlorocuprate ion [CuCl4](2-) in CuCl nanoplatelet formation from an ionic liquid precursor (ILP) JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The formation of CuCl nanoplatelets from the ionic liquid precursor (ILP) butylpyridinium tetrachlorocuprate [C4Py](2)[CuCl4] using ascorbic acid as a reducing agent was investigated. In particular, electron paramagnetic resonance (EPR) spectroscopy was used to evaluate the interaction between ascorbic acid and the Cu(II) ion before reduction to Cu(I). EPR spectroscopy suggests that the [CuCl4](2-) ion in the neat IL is a distorted tetrahedron, consistent with DFT calculations. Addition of ascorbic acid leads to the removal of one chloride from the [CuCl4](2-) anion, as shown by DFT and the loss of symmetry by EPR. DFT furthermore suggests that the most stable adduct is formed when only one hydroxyl group of the ascorbic acid coordinates to the Cu(II) ion. Y1 - 2011 U6 - https://doi.org/10.1039/c1cp20648f SN - 1463-9076 VL - 13 IS - 30 SP - 13537 EP - 13543 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tentschert, Jutta A1 - Jungnickel, Harald A1 - Reichardt, Philipp A1 - Leube, Peter A1 - Kretzschmar, Bernd A1 - Taubert, Andreas A1 - Luch, A. T1 - Identification of nano clay in composite polymers JF - Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films N2 - Industrialized food production is in urgent search for alternative packaging materials, which can serve the requirements of a globalized world in terms of longer product shelf lives, reduced freight weight to decrease transport costs, and better barrier functionality to preserve its freshness. Polymer materials containing organically modified nano clay particles as additives are one example for a new generation of packaging materials with specific barrier functionality to actually hit the market. Clay types used for these applications are aluminosilicates, which belong to the mineral group of phyllosilicates. These consist of nano-scaled thin platelets, which are organically modified with quaternary ammonium compounds acting as spacers between the different clay layers, thereby increasing the hydrophobicity of the mineral additive. A variety of different organically modified clays are already available, and the use as additive for food packaging materials is one important application. To ensure valid risk assessments of emerging nano composite polymers used in the food packaging industry, exact analytical characterization of the organically modified clay within the polymer matrix is of paramount importance. Time-of-flight SIMS in combination with multivariate statistical analysis was used to differentiate modified clay reference materials from another. Time-of-flight SIMS spectra of a reference polymer plate, which contained one specific nano clay composite, were acquired. For each modified clay additive, a set of characteristic diagnostic ions could be identified, which then was used to successfully assign unknown clay additives to the corresponding reference material. Thus, the described methodology could be used to define and characterize nano clay within polymer matrices. Copyright (c) 2014 John Wiley & Sons, Ltd. KW - ToF-SIMS KW - nanoparticles KW - nano clay KW - polymer KW - food contact material Y1 - 2014 U6 - https://doi.org/10.1002/sia.5546 SN - 0142-2421 SN - 1096-9918 VL - 46 SP - 334 EP - 336 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Tentschert, J. A1 - Draude, F. A1 - Jungnickel, H. A1 - Haase, A. A1 - Mantion, Alexandre A1 - Galla, S. A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment JF - Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films N2 - Silver nanoparticles (SNP) are among the most commercialized nanoparticles. Here, we show that peptide-coated SNP cause functional impairment of human macrophages. A dose-dependent inhibition of phagocytosis is observed after nanoparticle treatment, and pretreatment of cells with N-acetyl cysteine (NAC) can counteract the phagocytosis disturbances caused by SNP. Using the surface-sensitive mode of time-of-flight secondary ion mass spectrometry, in combination with multivariate statistical methods, we studied the composition of cell membranes in human macrophages upon exposure to SNP with and without NAC preconditioning. This method revealed characteristic changes in the lipid pattern of the cellular membrane outer leaflet in those cells challenged by SNP. Statistical analyses resulted in 19 characteristic ions, which can be used to distinguish between NAC pretreated and untreated macrophages. The present study discusses the assignments of surface cell membrane phospholipids for the identified ions and the resulting changes in the phospholipid pattern of treated cells. We conclude that the adverse effects in human macrophages caused by SNP can be partially reversed through NAC administration. Some alterations, however, remained. KW - silver nanoparticles KW - lipidomics KW - N-acetyl cysteine KW - phagocytosis KW - oxidative stress Y1 - 2013 U6 - https://doi.org/10.1002/sia.5155 SN - 0142-2421 VL - 45 IS - 1 SP - 483 EP - 485 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Taubert, Andreas A1 - Stange, Franziska A1 - Li, Zhonghao A1 - Junginger, Mathias A1 - Günter, Christina A1 - Neumann, Mike A1 - Friedrich, Alwin T1 - CuO nanoparticles from the Strongly Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide evaluation of the Ethanol Sensing Activity JF - ACS applied materials & interfaces N2 - The sensing potential of CuO nanoparticles synthesized via. precipitation from a water/ionic liquid precursor (ILP) mixture was investigated. The particles have a moderate surface area of 66 m(2)/g after synthesis, which decreases upon thermal treatment to below 5 m(2)/g. Transmission electron microscopy confirms crystal growth upon annealing, likely due to sintering effects. The as-synthesized particles can be used for ethanol sensing. The respective sensors show fast response and recovery times of below 10 s and responses greater than 2.3 at 100 ppm of ethanol at 200 degrees C, which is higher than any CuO-based ethanol sensor described so far. KW - ionic liquids KW - ionic liquid precursors KW - tetrabutylammonium hydroxide KW - nanoparticles KW - CuO KW - gas sensing Y1 - 2012 U6 - https://doi.org/10.1021/am201427q SN - 1944-8244 VL - 4 IS - 2 SP - 791 EP - 795 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Taubert, Andreas A1 - Löbbicke, Ruben A1 - Kirchner, Barbara A1 - Leroux, Fabrice T1 - First examples of organosilica-based ionogels BT - synthesis and electrochemical behavior JF - Beilstein journal of nanotechnology N2 - The article describes the synthesis and properties of new ionogels for ion transport. A new preparation process using an organic linker, bis(3-(trimethoxysilyl) propyl) amine (BTMSPA), yields stable organosilica matrix materials. The second ionogel component, the ionic liquid 1-methyl-3-(4-sulfobutyl) imidazolium 4-methylbenzenesulfonate, [BmimSO(3)H][PTS], can easily be prepared with near-quantitative yields. [BmimSO(3)H][PTS] is the proton conducting species in the ionogel. By combining the stable organosilica matrix with the sulfonated ionic liquid, mechanically stable, and highly conductive ionogels with application potential in sensors or fuel cells can be prepared. KW - ionic liquids KW - ionogels KW - organosilica KW - proton conductivity Y1 - 2017 U6 - https://doi.org/10.3762/bjnano.8.77 SN - 2190-4286 VL - 8 SP - 736 EP - 751 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Taubert, Andreas A1 - Leroux, Fabrice A1 - Rabu, Pierre A1 - de Zea Bermudez, Veronica T1 - Advanced hybrid nanomaterials JF - Beilstein journal of nanotechnology KW - colloidal chemistry KW - environmental remediation KW - hybrid nanomaterials KW - nanocomposite KW - nanofillers KW - nanomedicine KW - nanostructures KW - polymer fillers KW - pore templating KW - smart materials Y1 - 2019 U6 - https://doi.org/10.3762/bjnano.10.247 SN - 2190-4286 VL - 10 SP - 2563 EP - 2567 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt am Main ER -