TY - JOUR A1 - Dallmeyer, Anne A1 - Kleinen, Thomas A1 - Claussen, Martin A1 - Weitzel, Nils A1 - Cao, Xianyong A1 - Herzschuh, Ulrike T1 - The deglacial forest conundrum JF - Nature Communications N2 - How fast the Northern Hemisphere (NH) forest biome tracks strongly warming climates is largely unknown. Regional studies reveal lags between decades and millennia. Here we report a conundrum: Deglacial forest expansion in the NH extra-tropics occurs approximately 4000 years earlier in a transient MPI-ESM1.2 simulation than shown by pollen-based biome reconstructions. Shortcomings in the model and the reconstructions could both contribute to this mismatch, leaving the underlying causes unresolved. The simulated vegetation responds within decades to simulated climate changes, which agree with pollen-independent reconstructions. Thus, we can exclude climate biases as main driver for differences. Instead, the mismatch points at a multi-millennial disequilibrium of the NH forest biome to the climate signal. Therefore, the evaluation of time-slice simulations in strongly changing climates with pollen records should be critically reassessed. Our results imply that NH forests may be responding much slower to ongoing climate changes than Earth System Models predict.
Deglacial forest expansion in the Northern Hemisphere poses a conundrum: Model results agree with the climate signal but are several millennia ahead of reconstructed forest dynamics. The underlying causes remain unsolved. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-33646-6 SN - 2041-1723 VL - 13 IS - 1 PB - Nature Publishing Group UK CY - [London] ER - TY - JOUR A1 - Li, Zhen A1 - Wang, Yongbo A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Ni, Jian A1 - Zhao, Yan T1 - Pollen-based biome reconstruction on the Qinghai-Tibetan Plateau during the past 15,000 years JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Reconstruction of past vegetation change is critical for better understanding the potential impact of future global change on the fragile alpine ecosystems of the Qinghai-Tibetan Plateau (QTP). In this paper, pollen assemblages comprising 58 records from the QTP, spanning the past 15 kyrs, were collected to reconstruct biome compositions using a standard approach. Six forest biomes were identified mainly on the southeastern plateau, exhibiting a pattern of gradual expansion along the eastern margin during early to mid-Holocene times. The alpine meadow biome was separately identified based on an updated scheme, and showed notable westward expansions towards lower latitudes and higher altitudes during early Holocene times. Consistent patterns of migration could also be identified for the alpine steppe biome, which moved eastward during the late Holocene after 4 ka. As the dominant biome type, temperate steppe was distributed widely over the QTP with minor migration patterns, except for a progressive expansion to lower altitudes in the late Holocene times. The desert biome was inferred mainly as covering the northwestern plateau and the Qaidam Basin, in relatively restricted areas. The spatial distribution of the reconstructed biomes represent the large-scale vegetation gradient on the QTP. Monsoonal precipitation expressed predominant controls on the development of alpine ecosystems, while the variations in desert vegetation responded to regional moisture brought by the mid-latitude Westerlies. Temperature changes played relatively minor roles in the variations of alpine vegetation, but exerted more significant impacts on the forest biomes. KW - biomization KW - pollen KW - vegetation migration KW - Qinghai-Tibetan Plateau KW - holocene Y1 - 2022 U6 - https://doi.org/10.1016/j.palaeo.2022.111190 SN - 0031-0182 SN - 1872-616X VL - 604 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Böhmer, Thomas A1 - Li, Chenzhi A1 - Cao, Xianyong A1 - Hébert, Raphaël A1 - Dallmeyer, Anne A1 - Telford, Richard J. A1 - Kruse, Stefan T1 - Reversals in temperature-precipitation correlations in the Northern Hemisphere extratropics during the Holocene JF - Geophysical research letters N2 - Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging. Y1 - 2022 U6 - https://doi.org/10.1029/2022GL099730 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 22 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Jia, Weihan A1 - Anslan, Sten A1 - Chen, Fahu A1 - Cao, Xianyong A1 - Dong, Hailiang A1 - Dulias, Katharina A1 - Gu, Zhengquan A1 - Heinecke, Liv A1 - Jiang, Hongchen A1 - Kruse, Stefan A1 - Kang, Wengang A1 - Li, Kai A1 - Liu, Sisi A1 - Liu, Xingqi A1 - Liu, Ying A1 - Ni, Jian A1 - Schwalb, Antje A1 - Stoof-Leichsenring, Kathleen R. A1 - Shen, Wei A1 - Tian, Fang A1 - Wang, Jing A1 - Wang, Yongbo A1 - Wang, Yucheng A1 - Xu, Hai A1 - Yang, Xiaoyan A1 - Zhang, Dongju A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era. KW - Sedimentary ancient DNA (sedaDNA) KW - Tibetan Plateau KW - Environmental DNA KW - Taphonomy KW - Ecosystem KW - Biodiversity KW - Paleoecology KW - Paleogeography Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107703 SN - 0277-3791 SN - 1873-457X VL - 293 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Li, Chenzhi A1 - Postl, Alexander K. A1 - Böhmer, Thomas A1 - Cao, Xianyong A1 - Dolman, Andrew M. A1 - Herzschuh, Ulrike T1 - Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0) JF - Earth system science data : ESSD N2 - We present a chronology framework named LegacyAge 1.0 containing harmonized chronologies for 2831 pollen records (downloaded from the Neotoma Paleoecology Database and the supplementary Asian datasets) together with their age control points and metadata in machine-readable data formats. All chronologies use the Bayesian framework implemented in Bacon version 2.5.3. Optimal parameter settings of priors (accumulation.shape, memory.strength, memory.mean, accumulation.rate, and thickness) were identified based on information in the original publication or iteratively after preliminary model inspection. The most common control points for the chronologies are radiocarbon dates (86.1 %), calibrated by the latest calibration curves (IntCal20 and SHCal20 for the terrestrial radiocarbon dates in the Northern Hemisphere and Southern Hemisphere and Marine20 for marine materials). The original publications were consulted when dealing with outliers and inconsistencies. Several major challenges when setting up the chronologies included the waterline issue (18.8% of records), reservoir effect (4.9 %), and sediment deposition discontinuity (4.4 %). Finally, we numerically compare the LegacyAge 1.0 chronologies to those published in the original publications and show that the reliability of the chronologies of 95.4% of records could be improved according to our assessment. Our chronology framework and revised chronologies provide the opportunity to make use of the ages and age uncertainties in synthesis studies of, for example, pollen-based vegetation and climate change. The LegacyAge 1.0 dataset, including metadata, datings, harmonized chronologies, and R code used, is openaccess and available at PANGAEA (https://doi.org/10.1594/PANGAEA.933132; Li et al., 2021) and Zenodo (https://doi.org/10.5281/zenodo.5815192; Li et al., 2022), respectively. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-1331-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 3 SP - 1331 EP - 1343 PB - Copernics Publications CY - Katlenburg-Lindau ER - TY - GEN A1 - Cao, Xianyong A1 - Tian, Fang A1 - Andreev, Andrei A1 - Anderson, Patricia M. A1 - Lozhkin, Anatoly V. A1 - Bezrukova, Elena A1 - Ni, Jian A1 - Rudaya, Natalia A1 - Stobbe, Astrid A1 - Wieczorek, Mareike A1 - Herzschuh, Ulrike T1 - A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 % of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 % were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 %) and lake sediments (33 %). Most of the records (83 %) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1427 KW - Late Quaternary vegetation KW - Holocene environmental history KW - eastern continental Asia KW - plant macrofossil data KW - late pleistocene KW - paleoenvironmental records KW - Verkhoyansk mountains KW - climate dynamics KW - glacial maximum KW - Northern Asia Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512438 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Andreev, Andrei A1 - Anderson, Patricia M. A1 - Lozhkin, Anatoly V. A1 - Bezrukova, Elena A1 - Ni, Jian A1 - Rudaya, Natalia A1 - Stobbe, Astrid A1 - Wieczorek, Mareike A1 - Herzschuh, Ulrike T1 - A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr JF - Earth System Science Data N2 - Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 % of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 % were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 %) and lake sediments (33 %). Most of the records (83 %) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa. KW - Late Quaternary vegetation KW - Holocene environmental history KW - eastern continental Asia KW - plant macrofossil data KW - late pleistocene KW - paleoenvironmental records KW - Verkhoyansk mountains KW - climate dynamics KW - glacial maximum KW - Northern Asia Y1 - 2020 U6 - https://doi.org/10.5194/essd-12-119-2020 SN - 1866-3508 SN - 1866-3516 VL - 12 IS - 1 SP - 119 EP - 135 PB - Copernics Publications CY - Katlenburg-Lindau ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Li, Furong A1 - Gaillard, Marie-Jose A1 - Rudaya, Natalia A1 - Xu, Qinghai A1 - Herzschuh, Ulrike T1 - Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - We collected the available relative pollen productivity estimates (PPEs) for 27 major pollen taxa from Eurasia and applied them to estimate plant abundances during the last 40 ka cal BP (calibrated thousand years before present) using pollen counts from 203 fossil pollen records in northern Asia (north of 40 degrees N). These pollen records were organized into 42 site groups and regional mean plant abundances calculated using the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. Time-series clustering, constrained hierarchical clustering, and detrended canonical correspondence analysis were performed to investigate the regional pattern, time, and strength of vegetation changes, respectively. Reconstructed regional plant functional type (PFT) components for each site group are generally consistent with modern vegetation in that vegetation changes within the regions are characterized by minor changes in the abundance of PFTs rather than by an increase in new PFTs, particularly during the Holocene. We argue that pollen-based REVEALS estimates of plant abundances should be a more reliable reflection of the vegetation as pollen may overestimate the turnover, particularly when a high pollen producer invades areas dominated by low pollen producers. Comparisons with vegetation-independent climate records show that climate change is the primary factor driving land-cover changes at broad spatial and temporal scales. Vegetation changes in certain regions or periods, however, could not be explained by direct climate change, e.g. inland Siberia, where a sharp increase in evergreen conifer tree abundance occurred at ca. 7-8 ka cal BP despite an unchanging climate, potentially reflecting their response to complex climate-permafrost-fire-vegetation interactions and thus a possible long-term lagged climate response. Y1 - 2019 U6 - https://doi.org/10.5194/cp-15-1503-2019 SN - 1814-9324 SN - 1814-9332 VL - 15 IS - 4 SP - 1503 EP - 1536 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Dallmeyer, Anne A1 - Herzschuh, Ulrike T1 - Northern Hemisphere biome changes (> 30 degrees N) since 40 cal ka BP and their driving factors inferred from model-data comparisons JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Ongoing and past biome transitions are generally assigned to climate and atmospheric changes (e.g. temperature, precipitation, CO2), but the major regional factors or factor combinations that drive vegetation change often remain unknown. Modelling studies applying ensemble runs can help to partition the effects of the different drivers. Such studies require careful validation with observational data. In this study, fossil pollen records from 741 sites in Europe, 728 sites in North America, and 418 sites in Asia (extracted from terrestrial archives including lake sediments) are used to reconstruct biomes at selected time slices between 40 cal ka BP (calibrated thousand years before present) and today. These results are used to validate Northern Hemisphere biome distributions (>30 degrees N) simulated by the biome model BIOME4 that has been forced with climate data simulated by a General Circulation model. Quantitative comparisons between pollen- and model-based results show a generally good fit at a broad spatial scale. Mismatches occur in central-arid Asia with a broader extent of grassland throughout the last 40 ka (likely due to the over-representation of Artemisia and Chenopodiaceae pollen) and in Europe with over-estimation of tundra at 0 cal ka BP (likely due to human impacts to some extent). Sensitivity analysis reveals that broad-scale biome changes follow the global signal of major postglacial temperature change, although the climatic variables vary in their regional and temporal importance. Temperature is the dominant variable in Europe and other rather maritime areas for biome changes between 21 and 14 ka, while precipitation is highly important in the arid inland regions of Asia and North America. The ecophysiological effect of changes in the atmospheric CO2-concentration has the highest impact during this transition than in other intervals. With respect to modern vegetation in the course of global warming, our findings imply that vegetation change in the Northern Hemisphere may be strongly limited by effective moisture changes, i.e. the combined effect of temperature and precipitation, particularly in inland areas. (C) 2019 Elsevier Ltd. All rights reserved. KW - Biomisation KW - Climate warming KW - Europe KW - Holocene KW - Model-data comparison KW - Northern Asia KW - North America KW - Pollen KW - Siberia KW - Vegetation driver Y1 - 2019 U6 - https://doi.org/10.1016/j.quascirev.2019.07.034 SN - 0277-3791 VL - 220 SP - 291 EP - 309 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Laepple, Thomas A1 - Dallmeyer, Anne A1 - Telford, Richard J. A1 - Ni, Jian A1 - Chen, Fahu A1 - Kong, Zhaochen A1 - Liu, Guangxiu A1 - Liu, Kam-Biu A1 - Liu, Xingqi A1 - Stebich, Martina A1 - Tang, Lingyu A1 - Tian, Fang A1 - Wang, Yongbo A1 - Wischnewski, Juliane A1 - Xu, Qinghai A1 - Yan, Shun A1 - Yang, Zhenjing A1 - Yu, Ge A1 - Zhang, Yun A1 - Zhao, Yan A1 - Zheng, Zhuo T1 - Position and orientation of the westerly jet determined Holocene rainfall patterns in China JF - Nature Communications N2 - Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-09866-8 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER -