TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Koch, Matthias T1 - Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS JF - Rapid communications in mass spectrometry : RCM N2 - Rationale: Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). Methods: Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. Results: The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+; 2Na(+) K+; NaNH4+; KNH4+). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+-complexes, we identified LM-TPs as K+-complexes. Conclusion: We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS. Y1 - 2022 U6 - https://doi.org/10.1002/rcm.9349 SN - 0951-4198 SN - 1097-0231 VL - 36 IS - 18 PB - Wiley CY - New York, NY ER - TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Schwerdtle, Tanja A1 - Koch, Matthias T1 - LC-HRMS-Based identification of transformation products of the drug salinomycin generated by electrochemistry and liver microsome JF - Antibiotics N2 - The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction. KW - salinomycin KW - ionophore antibiotics KW - transformation product KW - electrochemistry KW - rat KW - human liver microsomes KW - HRMS Y1 - 2022 U6 - https://doi.org/10.3390/antibiotics11020155 SN - 2079-6382 VL - 11 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Langenhan, Jennifer A1 - Jaeger, Carsten A1 - Baum, Katharina A1 - Simon, Mareike A1 - Lisec, Jan T1 - A flexible tool to correct superimposed mass isotopologue distributions in GC-APCI-MS flux experiments JF - Metabolites N2 - The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer-based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN. KW - mass isotopologue distribution KW - enrichment calculation KW - flux KW - experiments KW - atmospheric pressure chemical ionization KW - R package KW - CorMID Y1 - 2022 U6 - https://doi.org/10.3390/metabo12050408 SN - 2218-1989 VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, Denis A1 - Muth, Thilo A1 - Krüger, Maren A1 - Mages, Hans Werner A1 - Dorner, Brigitte G. A1 - Knospe, Julia A1 - Schenk, Jörg A. A1 - Sellrie, Frank A1 - Weller, Michael G. T1 - MALDI-TOF-MS-based identification of monoclonal murine Anti-SARS-CoV-2 antibodies within one hour JF - Antibodies N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - SARS-CoV-2 antibody KW - reproducibility crisis KW - peptide mass KW - fingerprinting KW - monoclonal antibody KW - traceability KW - identity KW - antibody KW - identification KW - antibody light chain KW - MALDI-TOF-MS Y1 - 2022 U6 - https://doi.org/10.3390/antib11020027 SN - 2073-4468 VL - 11 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kotthoff, Lisa A1 - O'Callaghan, Sarah-Louise A1 - Lisec, Jan A1 - Schwerdtle, Tanja A1 - Koch, Matthias T1 - Structural annotation of electro- and photochemically generated transformation products of moxidectin using high-resolution mass spectrometry JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - Moxidectin (MOX) is a widely used anthelmintic drug for the treatment of internal and external parasites in food-producing and companion animals. Transformation products (TPs) of MOX, formed through metabolic degradation or acid hydrolysis, may pose a potential environmental risk, but only few were identified so far. In this study, we therefore systematically characterized electro- and photochemically generated MOX TPs using high-resolution mass spectrometry (HRMS). Oxidative electrochemical (EC) TPs were generated in an electrochemical reactor and photochemical (PC) TPs by irradiation with UV-C light. Subsequent HRMS measurements were performed to identify accurate masses and deduce occurring modification reactions of derived TPs in a suspected target analysis. In total, 26 EC TPs and 59 PC TPs were found. The main modification reactions were hydroxylation, (de-)hydration, and derivative formation with methanol for EC experiments and isomeric changes, (de-)hydration, and changes at the methoxime moiety for PC experiments. In addition, several combinations of different modification reactions were identified. For 17 TPs, we could predict chemical structures through interpretation of acquired MS/MS data. Most modifications could be linked to two specific regions of MOX. Some previously described metabolic reactions like hydroxylation or O-demethylation were confirmed in our EC and PC experiments as reaction type, but the corresponding TPs were not identical to known metabolites or degradation products. The obtained knowledge regarding novel TPs and reactions will aid to elucidate the degradation pathway of MOX which is currently unknown. KW - veterinary drug KW - moxidectin KW - transformation products KW - electrochemistry KW - photochemistry KW - LC KW - HRMS Y1 - 2020 U6 - https://doi.org/10.1007/s00216-020-02572-1 SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 13 SP - 3141 EP - 3152 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, Tanja A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid+ chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1340 KW - transformation products KW - monensin KW - veterinary drugs KW - electrochemistry KW - hydrolysis KW - LC/HRMS Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473262 SN - 1866-8372 IS - 1340 ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, Tanja A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis JF - Molecules N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - transformation products KW - monensin KW - veterinary drugs KW - electrochemistry KW - hydrolysis KW - LC/HRMS Y1 - 2019 U6 - https://doi.org/10.3390/molecules24152732 SN - 1420-3049 VL - 24 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Feher, Kristen A1 - Lisec, Jan A1 - Roemisch-Margl, Lilla A1 - Selbig, Joachim A1 - Gierl, Alfons A1 - Piepho, Hans-Peter A1 - Nikoloski, Zoran A1 - Willmitzer, Lothar T1 - Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach JF - PLoS one Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0085435 SN - 1932-6203 VL - 9 IS - 1 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Meyer, Rhonda C. A1 - Witucka-Wall, Hanna A1 - Becher, Martina A1 - Blacha, Anna Maria A1 - Boudichevskaia, Anastassia A1 - Dörmann, Peter A1 - Fiehn, Oliver A1 - Friedel, Svetlana A1 - von Korff, Maria A1 - Lisec, Jan A1 - Melzer, Michael A1 - Repsilber, Dirk A1 - Schmidt, Renate A1 - Scholz, Matthias A1 - Selbig, Joachim A1 - Willmitzer, Lothar A1 - Altmann, Thomas T1 - Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids JF - The plant journal N2 - Heterosis-associated cellular and molecular processes were analyzed in seeds and seedlings of Arabidopsis thaliana accessions Col-0 and C24 and their heterotic hybrids. Microscopic examination revealed no advantages in terms of hybrid mature embryo organ sizes or cell numbers. Increased cotyledon sizes were detectable 4 days after sowing. Growth heterosis results from elevated cell sizes and numbers, and is well established at 10 days after sowing. The relative growth rates of hybrid seedlings were most enhanced between 3 and 4 days after sowing. Global metabolite profiling and targeted fatty acid analysis revealed maternal inheritance patterns for a large proportion of metabolites in the very early stages. During developmental progression, the distribution shifts to dominant, intermediate and heterotic patterns, with most changes occurring between 4 and 6 days after sowing. The highest incidence of heterotic patterns coincides with establishment of size differences at 4 days after sowing. In contrast, overall transcript patterns at 4, 6 and 10 days after sowing are characterized by intermediate to dominant patterns, with parental transcript levels showing the largest differences. Overall, the results suggest that, during early developmental stages, intermediate gene expression and higher metabolic activity in the hybrids compared to the parents lead to better resource efficiency, and therefore enhanced performance in the hybrids. KW - heterosis KW - seedlings KW - metabolite profiling KW - transcript profiling KW - morphological analysis KW - Arabidopsis thaliana KW - biomass Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-313X.2012.05021.x SN - 0960-7412 VL - 71 IS - 4 SP - 669 EP - 683 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Brotman, Yariv A1 - Landau, Udi A1 - Pnini, Smadar A1 - Lisec, Jan A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Zilberstein, Aviah A1 - Willmitzer, Lothar A1 - Chet, Ilan A1 - Viterbo, Ada T1 - The LysM Receptor-Like Kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in arabidopsis plants JF - Molecular plant N2 - Application of crab shell chitin or pentamer chitin oligosaccharide to Arabidopsis seedlings increased tolerance to salinity in wild-type but not in knockout mutants of the LysM Receptor-Like Kinase1 (CERK1/LysM RLK1) gene, known to play a critical role in signaling defense responses induced by exogenous chitin. Arabidopsis plants overexpressing the endochitinase chit36 and hexoaminidase excy1 genes from the fungus Trichoderma asperelleoides T203 showed increased tolerance to salinity, heavy-metal stresses, and Botrytis cinerea infection. Resistant lines, overexpressing fungal chitinases at different levels, were outcrossed to lysm rlk1 mutants. Independent homozygous hybrids lost resistance to biotic and abiotic stresses, despite enhanced chitinase activity. Expression analysis of 270 stress-related genes, including those induced by reactive oxygen species (ROS) and chitin, revealed constant up-regulation (at least twofold) of 10 genes in the chitinase-overexpressing line and an additional 76 salt-induced genes whose expression was not elevated in the lysm rlk1 knockout mutant or the hybrids harboring the mutation. These findings elucidate that chitin-induced signaling mediated by LysM RLK1 receptor is not limited to biotic stress response but also encompasses abiotic-stress signaling and can be conveyed by ectopic expression of chitinases in plants. KW - abiotic stress KW - chitin-induced signaling KW - chitinases KW - LysM receptor kinase KW - Trichoderma Y1 - 2012 U6 - https://doi.org/10.1093/mp/sss021 SN - 1674-2052 VL - 5 IS - 5 SP - 1113 EP - 1124 PB - Oxford Univ. Press CY - Oxford ER -