TY - JOUR A1 - Hoffmann, Falk A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Analytical model and Monte Carlo simulations of polymer degradation with improved chain cut statistics JF - Journal of materials research : JMR N2 - The degradation of polymers is described by mathematical models based on bond cleavage statistics including the decreasing probability of chain cuts with decreasing average chain length. We derive equations for the degradation of chains under a random chain cut and a chain end cut mechanism, which are compared to existing models. The results are used to predict the influence of internal molecular parameters. It is shown that both chain cut mechanisms lead to a similar shape of the mass or molecular mass loss curve. A characteristic time is derived, which can be used to extract the maximum length of soluble fragments l of the polymer. We show that the complete description is needed to extract the degradation rate constant k from the molecular mass loss curve and that l can be used to design polymers that lose less mechanical stability before entering the mass loss phase. KW - Modeling KW - Degradable KW - Polymer KW - Molecular weight KW - Simulation Y1 - 2022 U6 - https://doi.org/10.1557/s43578-022-00495-4 SN - 0884-2914 SN - 2044-5326 VL - 37 IS - 5 SP - 1093 EP - 1101 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Izraylit, Victor A1 - Liu, Yue A1 - Tarazona, Natalia A. A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Crystallization and degradation behaviour of multiblock copolyester blends in Langmuir monolayers JF - MRS communications / a publication of the Materials Research Society N2 - Supporting the wound healing of soft tissues requires fixation devices becoming more elastic while degrading. To address this unmet need, we designed a blend of degradable multiblock copolymers, which is cross-linked by PLA stereocomplexation combining two soft segments differing substantially in their hydrolytic degradation rate. The degradation path and concomitant structural changes are predicted by Langmuir monolayer technique. The fast hydrolysis of one soft segment leads to a decrease of the total polymer mass at constant physical cross-linking density. The corresponding increase of the average spacing between the network nodes suggests the targeted increase of the blend's flexibility. KW - Degradable KW - In situ KW - Microstructure KW - Thin film Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00107-y SN - 2159-6859 SN - 2159-6867 VL - 11 IS - 6 SP - 850 EP - 855 PB - Springer CY - Berlin ER -