TY - JOUR A1 - Bürger, Gerd A1 - Sobie, S. R. A1 - Cannon, A. J. A1 - Werner, A. T. A1 - Murdock, T. Q. T1 - Downscaling extremes an intercomparison of multiple methods for future climate JF - Journal of climate N2 - This study follows up on a previous downscaling intercomparison for present climate. Using a larger set of eight methods the authors downscale atmospheric fields representing present (1981-2000) and future (2046-65) conditions, as simulated by six global climate models following three emission scenarios. Local extremes were studied at 20 locations in British Columbia as measured by the same set of 27 indices, ClimDEX, as in the precursor study. Present and future simulations give 2 x 3 x 6 x 8 x 20 x 27 = 155 520 index climatologies whose analysis in terms of mean change and variation is the purpose of this study. The mean change generally reinforces what is to be expected in a warmer climate: that extreme cold events become less frequent and extreme warm events become more frequent, and that there are signs of more frequent precipitation extremes. There is considerable variation, however, about this tendency, caused by the influence of scenario, climate model, downscaling method, and location. This is analyzed using standard statistical techniques such as analysis of variance and multidimensional scaling, along with an assessment of the influence of each modeling component on the overall variation of the simulated change. It is found that downscaling generally has the strongest influence, followed by climate model; location and scenario have only a minor influence. The influence of downscaling could be traced back in part to various issues related to the methods, such as the quality of simulated variability or the dependence on predictors. Using only methods validated in the precursor study considerably reduced the influence of downscaling, underpinning the general need for method verification. Y1 - 2013 U6 - https://doi.org/10.1175/JCLI-D-12-00249.1 SN - 0894-8755 VL - 26 IS - 10 SP - 3429 EP - 3449 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Dobler, C. A1 - Bürger, Gerd A1 - Stötter, J. T1 - Simulating future precipitation extremes in a complex Alpine catchment JF - Natural hazards and earth system sciences N2 - The objectives of the present investigation are (i) to study the effects of climate change on precipitation extremes and (ii) to assess the uncertainty in the climate projections. The investigation is performed on the Lech catchment, located in the Northern Limestone Alps. In order to estimate the uncertainty in the climate projections, two statistical downscaling models as well as a number of global and regional climate models were considered. The downscaling models applied are the Expanded Downscaling (XDS) technique and the Long Ashton Research Station Weather Generator (LARS-WG). The XDS model, which is driven by analyzed or simulated large-scale synoptic fields, has been calibrated using ECMWF-interim reanalysis data and local station data. LARS-WG is controlled through stochastic parameters representing local precipitation variability, which are calibrated from station data only. Changes in precipitation mean and variability as simulated by climate models were then used to perturb the parameters of LARS-WG in order to generate climate change scenarios. In our study we use climate simulations based on the A1B emission scenario. The results show that both downscaling models perform well in reproducing observed precipitation extremes. In general, the results demonstrate that the projections are highly variable. The choice of both the GCM and the downscaling method are found to be essential sources of uncertainty. For spring and autumn, a slight tendency toward an increase in the intensity of future precipitation extremes is obtained, as a number of simulations show statistically significant increases in the intensity of 90th and 99th percentiles of precipitation on wet days as well as the 5- and 20-yr return values. Y1 - 2013 U6 - https://doi.org/10.5194/nhess-13-263-2013 SN - 1561-8633 VL - 13 IS - 2 SP - 263 EP - 277 PB - Copernicus CY - Göttingen ER -