TY - JOUR A1 - Aksu, Yilmaz A1 - Frasca, Stefano A1 - Wollenberger, Ursula A1 - Driess, Matthias A1 - Thomas, Arne T1 - A molecular precursor approach to tunable porous tin-rich indium tin oxide with durable high electrical conductivity for bioelectronic devices JF - Chemistry of materials : a publication of the American Chemical Society N2 - The preparation of porous, i.e., high surface area electrodes from transparent conducting oxides, is a valuable goal in materials chemistry as such electrodes can enable further development of optoelectronic, electrocatalytic, or bioelectronic devices. In this work the first tin-rich mesoporous indium tin oxide is prepared using the molecular heterobimetallic single-source precursor, indium tin tris-tert-butoxide, together with an appropriate structure-directing template, yielding materials with high surface areas and tailorable pore size. The resulting mesoporous tin-rich ITO films show a high and durable electrical conductivity and transparency, making them interesting materials for hosting electroactive biomolecules such as proteins. In fact, its unique performance in bioelectronic applications has been demonstrated by immobilization of high amounts of cytochrome c into the mesoporous film which undergo redox processes directly with the conductive electrode material. KW - indium tin oxide ITO KW - electrode KW - bioelectrochemistry KW - device KW - cytochrome c Y1 - 2011 U6 - https://doi.org/10.1021/cm103087p SN - 0897-4756 VL - 23 IS - 7 SP - 1798 EP - 1804 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Thiel, Kerstin A1 - Zehbe, Rolf A1 - Roesner, Jerômé A1 - Strauch, Peter A1 - Enthaler, Stephan A1 - Thomas, Arne T1 - A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks N2 - A polymer analogous reaction was carried out to generate a porous polymeric network with N-heterocyclic carbenes (NHC) in the polymer backbone. Using a stepwise approach, first a polyimine network is formed by polymerization of the tetrafunctional amine tetrakis(4-aminophenyl)methane. This polyimine network is converted in the second step into polyimidazolium chloride and finally to a polyNHC network. Furthermore a porous Cu(II)-coordinated polyNHC network can be generated. Supercritical drying generates polymer networks with high permanent surface areas and porosities which can be applied for different catalytic reactions. The catalytic properties were demonstrated for example in the activation of CO2 or in the deoxygenation of sulfoxides to the corresponding sulfides. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/py/c2py20947k U6 - https://doi.org/10.1039/C2PY20947K ER - TY - JOUR A1 - Thiel, Kerstin A1 - Zehbe, Rolf A1 - Röser, Jerome A1 - Strauch, Peter A1 - Enthaler, Stephan A1 - Thomas, Arne T1 - A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks JF - Polymer Chemistry N2 - A polymer analogous reaction was carried out to generate a porous polymeric network with N-heterocyclic carbenes (NHC) in the polymer backbone. Using a stepwise approach, first a polyimine network is formed by polymerization of the tetrafunctional amine tetrakis(4-aminophenyl)methane. This polyimine network is converted in the second step into polyimidazolium chloride and finally to a polyNHC network. Furthermore a porous Cu(II)-coordinated polyNHC network can be generated. Supercritical drying generates polymer networks with high permanent surface areas and porosities which can be applied for different catalytic reactions. The catalytic properties were demonstrated for example in the activation of CO2 or in the deoxygenation of sulfoxides to the corresponding sulfides. Y1 - 2013 U6 - https://doi.org/10.1039/c2py20947k SN - 1759-9954 VL - 4 IS - 6 SP - 1848 EP - 1856 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Thiel, Kerstin A1 - Zehbe, Rolf A1 - Roeser, Jerômé A1 - Strauch, Peter A1 - Enthaler, Stephan A1 - Thomas, Arne T1 - A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks N2 - A polymer analogous reaction was carried out to generate a porous polymeric network with N-heterocyclic carbenes (NHC) in the polymer backbone. Using a stepwise approach, first a polyimine network is formed by polymerization of the tetrafunctional amine tetrakis(4-aminophenyl)methane. This polyimine network is converted in the second step into polyimidazolium chloride and finally to a polyNHC network. Furthermore a porous Cu(II)-coordinated polyNHC network can be generated. Supercritical drying generates polymer networks with high permanent surface areas and porosities which can be applied for different catalytic reactions. The catalytic properties were demonstrated for example in the activation of CO2 or in the deoxygenation of sulfoxides to the corresponding sulfides. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 243 KW - covalent organic framework KW - n-heterocyclic carbenes KW - carbon-dioxide KW - intrinsic microporosity KW - heterogeneous catalysis KW - sulfoxides KW - reduction KW - complex KW - system KW - transformation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95118 SP - 1848 EP - 1856 ER - TY - JOUR A1 - Fischer, Sabrina A1 - Schmidt, Johannes A1 - Strauch, Peter A1 - Thomas, Arne T1 - An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition KW - borates KW - conjugated microporous polymers KW - covalent organic frameworks KW - ion exchange KW - weakly coordinating ions Y1 - 2013 U6 - https://doi.org/10.1002/anie.201303045 SN - 1433-7851 SN - 1521-3773 VL - 52 IS - 46 SP - 12174 EP - 12178 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Debatin, Franziska A1 - Behrens, Karsten A1 - Weber, Jens A1 - Baburin, Igor A. A1 - Thomas, Arne A1 - Schmidt, Johannes A1 - Senkovska, Irena A1 - Kaskel, Stefan A1 - Kelling, Alexandra A1 - Hedin, Niklas A1 - Bacsik, Zoltan A1 - Leoni, Stefano A1 - Seifert, Gotthard A1 - Jäger, Christian A1 - Günter, Christina A1 - Schilde, Uwe A1 - Friedrich, Alwin A1 - Holdt, Hans-Jürgen T1 - An isoreticular family of microporous metal-organic frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate Syntheses, structures and properties JF - Chemistry - a European journal N2 - We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-14, IFP=imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R=Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.01.7 angstrom), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and 1H MAS and 13C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345400?degrees C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO2 was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH4 (at 298 K), CO2 (at 298 K) and H2 (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO2 is physisorbed on IFP-14 under dry conditions and that both CO2 and H2O are physisorbed on IFP-1 under moist conditions. KW - adsorption KW - metal- organic frameworks KW - microporous materials KW - N KW - O ligands KW - zinc Y1 - 2012 U6 - https://doi.org/10.1002/chem.201200889 SN - 0947-6539 VL - 18 IS - 37 SP - 11630 EP - 11640 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yang, Jin A1 - Ghosh, Samrat A1 - Roeser, Jérôme A1 - Acharjya, Amitava A1 - Penschke, Christopher A1 - Tsutsui, Yusuke A1 - Rabeah, Jabor A1 - Wang, Tianyi A1 - Tameu, Simon Yves Djoko A1 - Ye, Meng-Yang A1 - Grüneberg, Julia A1 - Li, Shuang A1 - Li, Changxia A1 - Schomaecker, Reinhard A1 - Van de Krol, Roel A1 - Seki, Shu A1 - Saalfrank, Peter A1 - Thomas, Arne T1 - Constitutional isomerism of the linkages in donor–acceptor covalent organic frameworks and its impact on photocatalysis JF - Nature Communications N2 - When new covalent organic frameworks (COFs) are designed, the main efforts are typically focused on selecting specific building blocks with certain geometries and properties to control the structure and function of the final COFs. The nature of the linkage (imine, boroxine, vinyl, etc.) between these building blocks naturally also defines their properties. However, besides the linkage type, the orientation, i.e., the constitutional isomerism of these linkages, has rarely been considered so far as an essential aspect. In this work, three pairs of constitutionally isomeric imine-linked donor-acceptor (D-A) COFs are synthesized, which are different in the orientation of the imine bonds (D-C=N-A (DCNA) and D-N=C-A (DNCA)). The constitutional isomers show substantial differences in their photophysical properties and consequently in their photocatalytic performance. Indeed, all DCNA COFs show enhanced photocatalytic H2 evolution performance than the corresponding DNCA COFs. Besides the imine COFs shown here, it can be concluded that the proposed concept of constitutional isomerism of linkages in COFs is quite universal and should be considered when designing and tuning the properties of COFs. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-33875-9 SN - 2041-1723 VL - 13 IS - 1 PB - Nature Publishing Group UK CY - [London] ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Thomas, Arne A1 - Holdt, Hans-Jürgen T1 - In situ synthesis of amide-imidate-imidazolate ligand and formation of metal-organic frameworks: Application for gas storage JF - Microporous and mesoporous materials : zeolites, clays, carbons and related materials N2 - In this review article, we highlight the synthesis, structures and gas-sorption properties of a series of nine isostructural IFPs (IFP = Imidazolate Framework Potsdam) and two H-bonded networks. IFPs were synthesized by in situ partial hydrolysis of a 4,5-dicyanoimidazole under solvothermal conditions and hence an imidazolate-4-amide-5-imidate linker (C5H3N4O2) was generated, forming the metal -amide-imidate-imidazolateframeworks [M(C5H3N4O2)-R]. Varying R in the 2-substitued linker (R = Me, Cl, Br, Et, OMe and OEt) and metal centre (M2+ = zinc and cobalt) allowed the variation in channel diameter (4.2-03 angstrom) and a fine-tuning of the polarity and functionality of the channel walls of IFPs. Furthermore, we show that using ethyl or alkoxy substituted IFPs the flexible groups act as molecular gates for guest molecules. This allows highly selective CO2 sorption over Ny and CH4 gases. Moreover, during the synthesis of methoxy substituted IFPs (IFP-7 and -8), an imidazolate-4,5-diamide-2-olate linker (C5H4N4O3) formed in situ leads to the formation of a molecular building block (MBB) with a M-6 octahedron inscribed in a M-8 cube (M Zn2+ and Co2+). The MBBs connect by amide amide hydrogen bonds to a 3D robust supramolecular networks [Zn-14(C5H4N4O3)(12)(O) (OH)(2) (DMF)(4) denoted as 1 and 2, respectively, DMF = N,N'-dimethylformamide], which can be activated for N-2, CO2, CH4, and H-2 gas-sorption. (C) 2015 Elsevier Inc. All rights reserved. KW - Flexible linker KW - Gas sorption KW - Gate-effects KW - Hydrogen-bonding KW - Solvothermal synthesis Y1 - 2015 U6 - https://doi.org/10.1016/j.micromeso.2015.01.049 SN - 1387-1811 SN - 1873-3093 VL - 216 SP - 2 EP - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Debatin, Franziska A1 - Thomas, Arne A1 - Kelling, Alexandra A1 - Hedin, Niklas A1 - Bacsik, Zoltan A1 - Senkovska, Irena A1 - Kaskel, Stefan A1 - Junginger, Matthias A1 - Müller, Holger A1 - Schilde, Uwe A1 - Jäger, Christian A1 - Friedrich, Alwin A1 - Holdt, Hans-Jürgen T1 - In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2-and CO2-storage ability N2 - Narrow channels with polar walls are the structural and functional features responsible for the high capacity of a zinc-organic framework based on an imidazolate-amide-imidate ligand for the uptake of H2 and CO2 (see structure: orange Zn, blue N, red O, dark gray C, light gray H). The rigid and stable chelating ligand was synthesized in situ by partial hydrolysis of a dicyanoimidazole compound. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/26737/ U6 - https://doi.org/10.1002/anie.200906188 SN - 1433-7851 ER - TY - JOUR A1 - Frasca, Stefano A1 - von Graberg, Till A1 - Feng, Jiu-Ju A1 - Thomas, Arne A1 - Smarsly, Bernd M. A1 - Weidinger, Inez M. A1 - Scheller, Frieder W. A1 - Hildebrandt, Peter A1 - Wollenberger, Ursula T1 - Mesoporous indium tin oxide as a novel platform for bioelectronics N2 - Stable immobilization and reversible electrochemistry of cytochrome c in a tranparent indium tin oxide film with a well-defined mesoporosity (mpITO) is demonstrated. the transparency and good conductivity, in combination with the large surface area of mpITO, allow the incorporation of a high amount of elelctroactive biomolecules and their electrochemical and spectroscopic investigation. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry are employed for the characterization of cytochrome c immobilized in the mpITO and reveal no perturbant of the structural of the integrity of the redox protein. The potential of this modified material as a biosensor detection of superoxide anions is also demonstrated. Y1 - 2010 UR - http://www3.interscience.wiley.com/journal/122208635/home U6 - https://doi.org/10.1002/cctc.201000047 SN - 1867-3880 ER -