TY - JOUR A1 - Kammer, Stefan A1 - Kelling, Alexandra A1 - Baier, Heiko A1 - Mickler, Wulfhard A1 - Dosche, Carsten A1 - Rurack, Knut A1 - Kapp, Andreas A1 - Lisdat, Fred A1 - Holdt, Hans-Jürgen T1 - 2,11-dialkylated 1,12-diazaperylene copper(I) complexes : first supramolecular column assemblies by pi-pi stacking between homoleptic tetrahedral metal complexes, exhibiting low-energy MLCT transitions N2 - 2,11-Dialkylated 1,12-diazaperylenes (alkyl = Me, Et, iPr) dmedap, detdap and dipdap have been synthesized by reductive cyclization of 3,3-dialkylated 1,1-biisoquinolines 3a-c, resulting in the first copper(I) complexes of a large- surface ligand. The new copper(I) complexes show low-energy MLCT absorptions unprecedented for bis(-diimin)copper(I) complexes. The solid structures of the complexes[Cu(dipdap)2]BF4·CH2Cl2·1.5H2O, [Cu(dipdap)2]OTf·CH2Cl2, [Cu(dipdap)2]I·C2H4Cl2·THF·2H2O, [Cu(dmedap)2]OTf and [Cu(dipdap)2]AQSO3·H2O (AQSO3 = sodium 9,10-dihydro-9,10-dioxo-2- anthracenesulfonate) are reported. In [Cu(dipdap)2]BF4·CH2Cl2·1.5H2O, each copper(I) complex cation interacts with two others by - stacking interactions forming a novel supramolecular column structural motif running along the crystallographic c axis. In the crystalline compound [Cu(dipdap)2]AQSO3·H2O, aggregation between two complex cations and two additional anions by - stacking interactions is observed, leading to a tetrameric assembly. Furthermore, the three complex compounds [Cu(L)2]BF4 (L = dmedap, detdap, dipdap) were tested for sensory applications in aqueous buffer solutions in electrochemical studies of the complex immobilized on glassy carbon electrodes. Y1 - 2009 UR - http://www3.interscience.wiley.com/journal/27721/home U6 - https://doi.org/10.1002/ejic.200900695 SN - 1434-1948 ER - TY - JOUR A1 - Sarauli, David A1 - Peters, Kristina A1 - Xu, Chenggang A1 - Schulz, Burkhard A1 - Fattakhova-Rohlfing, Dina A1 - Lisdat, Fred T1 - 3D-Electrode architectures for enhanced direct bioelectrocatalysis of pyrroloquinoline quinone-dependent glucose dehydrogenase JF - ACS applied materials & interfaces N2 - We report on the fabrication of a complex electrode architecture for efficient direct bioelectrocatalysis. In the developed procedure, the redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase entrapped in a sulfonated polyaniline [poly(2-methoxyaniline-5-sulfonic acid)-co-aniline] was immobilized on macroporous indium tin oxide (macroITO) electrodes. The use of the 3D-conducting scaffold with a large surface area in combination with the conductive polymer enables immobilization of large amounts of enzyme and its efficient communication with the electrode, leading to enhanced direct bioelectrocatalysis. In the presence of glucose, the fabricated bioelectrodes show an exceptionally high direct bioelectrocatalytical response without any additional mediator. The catalytic current is increased more than 200-fold compared to planar ITO electrodes. Together with a high long-term stability (the current response is maintained for >90% of the initial value even after 2 weeks of storage), the transparent 3D macroITO structure with a conductive polymer represents a valuable basis for the construction of highly efficient bioelectronic units, which are useful as indicators for processes liberating glucose and allowing optical and electrochemical transduction. KW - 3D electrode structures KW - macroITO KW - conductive polymer KW - PQQ-GDH KW - direct bioelectrocatalysis KW - bioelectrochemistry Y1 - 2014 U6 - https://doi.org/10.1021/am5046026 SN - 1944-8244 VL - 6 IS - 20 SP - 17887 EP - 17893 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Sarauli, David A1 - Xu, Chenggang A1 - Dietzel, Birgit A1 - Schulz, Burkhard A1 - Lisdat, Fred T1 - A multilayered sulfonated polyaniline network with entrapped pyrroloquinoline quinone-dependent glucose dehydrogenase BT - tunable direct bioelectrocatalysis N2 - A feasible approach to construct multilayer films of sulfonated polyanilines – PMSA1 and PABMSA1 – containing different ratios of aniline, 2-methoxyaniline-5-sulfonic acid (MAS) and 3-aminobenzoic acid (AB), with the entrapped redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on Au and ITO electrode surfaces, is described. The formation of layers has been followed and confirmed by electrochemical impedance spectroscopy (EIS), which demonstrates that the multilayer assembly can be achieved in a progressive and uniform manner. The gold and ITO electrodes subsequently modified with PMSA1:PQQ-GDH and PABMSA1 films are studied by cyclic voltammetry (CV) and UV-Vis spectroscopy which show a significant direct bioelectrocatalytical response to the oxidation of the substrate glucose without any additional mediator. This response correlates linearly with the number of deposited layers. Furthermore, the constructed polymer/enzyme multilayer system exhibits a rather good long-term stability, since the catalytic current response is maintained for more than 60% of the initial value even after two weeks of storage. This verifies that a productive interaction of the enzyme embedded in the film of substituted polyaniline can be used as a basis for the construction of bioelectronic units, which are useful as indicators for processes liberating glucose and allowing optical and electrochemical transduction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 275 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98744 ER - TY - JOUR A1 - Sarauli, David A1 - Xu, Chenggang A1 - Dietzel, Birgit A1 - Schulz, Burkhard A1 - Lisdat, Fred T1 - A multilayered sulfonated polyaniline network with entrapped pyrroloquinoline quinone-dependent glucose dehydrogenase: tunable direct bioelectrocatalysis JF - Journal of materials chemistry : B, Materials for biology and medicine N2 - A feasible approach to construct multilayer films of sulfonated polyanilines - PMSA1 and PABMSA1 containing different ratios of aniline, 2-methoxyaniline-5-sulfonic acid (MAS) and 3-aminobenzoic acid (AB), with the entrapped redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on Au and ITO electrode surfaces, is described. The formation of layers has been followed and confirmed by electrochemical impedance spectroscopy (EIS), which demonstrates that the multilayer assembly can be achieved in a progressive and uniform manner. The gold and ITO electrodes subsequently modified with PMSA1:PQQ-GDH and PABMSA1 films are studied by cyclic voltammetry (CV) and UV-Vis spectroscopy which show a significant direct bioelectrocatalytical response to the oxidation of the substrate glucose without any additional mediator. This response correlates linearly with the number of deposited layers. Furthermore, the constructed polymer/enzyme multilayer system exhibits a rather good long-term stability, since the catalytic current response is maintained for more than 60% of the initial value even after two weeks of storage. This verifies that a productive interaction of the enzyme embedded in the film of substituted polyaniline can be used as a basis for the construction of bioelectronic units, which are useful as indicators for processes liberating glucose and allowing optical and electrochemical transduction. Y1 - 2014 U6 - https://doi.org/10.1039/c4tb00336e SN - 2050-750X SN - 2050-7518 VL - 2 IS - 21 SP - 3196 EP - 3203 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Beissenhirtz, Moritz Karl A1 - Scheller, Frieder W. A1 - Lisdat, Fred T1 - A superoxide sensor based on a multilayer cytochrome c electrode N2 - A novel multilayer cytochrome c electrode for the quantification of superoxide radical concentrations is introduced. The electrode consists of alternating layers of cytochrome c and poly(aniline(sulfonic acid)) on a gold wire electrode. The formation of multilayer structures was proven by SPR experiments. Assemblies with 2-15 protein layers showed electrochemical communication with the gold electrode. For every additional layer, a substantial increase in electrochemically active cytochrome c (cyt. c) was found. For electrodes of more than 10 layers, the increase was more than 1 order of magnitude as compared to monolayer electrode systems. Thermodynamic and kinetic parameters of the electrodes were characterized. The mechanism of electron transfer within the multilayer assembly was studied, with results suggesting a protein-protein electron-transfer model. Electrodes of 2-15 layers were applied to the in vitro quantification of enzymatically generated superoxide, showing superior sensitivity as compared to a monolayer-based sensor. An electrode with 6 cyt. c/PASA layers showed the highest sensitivity of the systems studied, giving an increase in sensitivity of half an order of magnitude versus the that of the monolayer electrode. The stability of the system was optimized using thermal treatment, resulting in no loss in sensor signal or protein loading after 10 successive measurements or 2 days of storage Y1 - 2004 SN - 0003-2700 ER - TY - JOUR A1 - Ignatov, S. A1 - Shishniashvili, D. A1 - Ge, Bixia A1 - Scheller, Frieder W. A1 - Lisdat, Fred T1 - Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants Y1 - 2002 ER - TY - JOUR A1 - Lisdat, Fred A1 - Ge, Bixia A1 - Reszka, R. A1 - Kozniewska, E. T1 - An electrochemical method for quantification of the radical scavening activity of SOD Y1 - 1999 ER - TY - JOUR A1 - Lisdat, Fred A1 - Utepbergenov, D. A1 - Haseloff, R. F. A1 - Blasig, Ingolf E. A1 - Stöcklein, Walter F. M. A1 - Scheller, Frieder W. A1 - Brigelius-Flohé, Regina T1 - An optical method for the detection of oxidative stress using protein-RNA interaction Y1 - 2001 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Lisdat, Fred A1 - Wollenberger, Ursula T1 - Application of electrically contacted enzymes for biosensors Y1 - 2005 SN - 3-527- 30690-0 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula A1 - Lei, Chenghong A1 - Jin, Wen A1 - Ge, Bixia A1 - Lehmann, Claudia A1 - Lisdat, Fred A1 - Fridman, Vadim T1 - Bioelectrocatalysis by redox enzymes at modified electrodes Y1 - 2002 UR - www.elsevier.nl/inca/publications/6/0/1/3/4/7/index.htt ER -