TY - JOUR A1 - Ehrlich, Elias A1 - Gaedke, Ursula T1 - Not attackable or not crackable BT - How pre- and post-attack defenses with different competition costs affect prey coexistence and population dynamics JF - Ecology and evolution N2 - It is well-known that prey species often face trade-offs between defense against predation and competitiveness, enabling predator-mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre-attack (e.g., camouflage) and post-attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre- or post-attack defended paying costs either by a higher half-saturation constant for resource uptake or a lower maximum growth rate. We show that post-attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre-attack defenses by interfering with the predator's functional response: Because the predator spends time handling “noncrackable” prey, the undefended prey is indirectly facilitated. A high half-saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator-induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom-up and top-down control of the prey community. KW - coexistence KW - competition-defense trade-off KW - defense against predation KW - functional response KW - indirect facilitation KW - predator-prey cycles Y1 - 2018 U6 - https://doi.org/10.1002/ece3.4145 SN - 2045-7758 VL - 8 IS - 13 SP - 6625 EP - 6637 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ehrlich, Elias A1 - Gaedke, Ursula T1 - Not attackable or not crackable BT - How pre-and post-attack defenses with different competition costs affect prey coexistence and population dynamics JF - Ecology and Evolution N2 - It is well-known that prey species often face trade-offs between defense against predation and competitiveness, enabling predator-mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre-attack (e.g., camouflage)and post-attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre-or post-attack defended paying costs either by a higher half-saturation constant for resource uptake or a lower maximum growth rate. We show that post-attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre-attack defenses by interfering with the predator’s functional response: Because the predator spends time handling “noncrackable” prey, the undefended prey is indirectly facilitated. A high half-saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator-induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom-up and top-down control of the prey community. KW - coexistence KW - competition–defense trade‐off KW - defense against predation KW - functional response KW - indirect facilitation KW - predator–prey cycles Y1 - 2018 U6 - https://doi.org/10.1002/ece3.4145 SN - 2045-7758 VL - 8 IS - 13 SP - 6625 EP - 6637 PB - Wiley ER - TY - JOUR A1 - Ehrlich, Elias A1 - Kath, Nadja Jeanette A1 - Gaedke, Ursula T1 - The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton JF - The ISME journal N2 - Theory predicts that trade-offs, quantifying costs of functional trait adjustments, crucially affect community trait adaptation to altered environmental conditions, but empirical verification is scarce. We evaluated trait dynamics (antipredator defense, maximum growth rate, and phosphate affinity) of a lake phytoplankton community in a seasonally changing environment, using literature trait data and 21 years of species-resolved high-frequency biomass measurements. The trait data indicated a concave defense-growth trade-off, promoting fast-growing species with intermediate defense. With seasonally increasing grazing pressure, the community shifted toward higher defense levels at the cost of lower growth rates along the trade-off curve, while phosphate affinity explained some deviations from it. We discuss how low fitness differences of species, inferred from model simulations, in concert with stabilizing mechanisms, e.g., arising from further trait dimensions, may lead to the observed phytoplankton diversity. In conclusion, quantifying trade-offs is key for predictions of community trait adaptation and biodiversity under environmental change. KW - coexistence KW - community ecology KW - diversity KW - evolution KW - fitness KW - functional traits KW - lake KW - maintenance KW - mechanisms KW - plankton Y1 - 2020 U6 - https://doi.org/10.1038/s41396-020-0619-1 SN - 1751-7362 SN - 1751-7370 VL - 14 IS - 6 SP - 1451 EP - 1462 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Ehrlich, Elias A1 - Becks, Lutz A1 - Gaedke, Ursula T1 - Trait-fitness relationships determine how trade-off shapes affect species coexistence JF - Ecology : a publication of the Ecological Society of America N2 - Trade-offs between functional traits are ubiquitous in nature and can promote species coexistence depending on their shape. Classic theory predicts that convex trade-offs facilitate coexistence of specialized species with extreme trait values (extreme species) while concave trade-offs promote species with intermediate trait values (intermediate species). We show here that this prediction becomes insufficient when the traits translate non-linearly into fitness which frequently occurs in nature, e.g., an increasing length of spines reduces grazing losses only up to a certain threshold resulting in a saturating or sigmoid trait-fitness function. We present a novel, general approach to evaluate the effect of different trade-off shapes on species coexistence. We compare the trade-off curve to the invasion boundary of an intermediate species invading the two extreme species. At this boundary, the invasion fitness is zero. Thus, it separates trait combinations where invasion is or is not possible. The invasion boundary is calculated based on measurable trait-fitness relationships. If at least one of these relationships is not linear, the invasion boundary becomes non-linear, implying that convex and concave trade-offs not necessarily lead to different coexistence patterns. Therefore, we suggest a new ecological classification of trade-offs into extreme-favoring and intermediate-favoring which differs from a purely mathematical description of their shape. We apply our approach to a well-established model of an empirical predator-prey system with competing prey types facing a trade-off between edibility and half-saturation constant for nutrient uptake. We show that the survival of the intermediate prey depends on the convexity of the trade-off. Overall, our approach provides a general tool to make a priori predictions on the outcome of competition among species facing a common trade-off in dependence of the shape of the trade-off and the shape of the trait-fitness relationships. KW - coexistence KW - competition KW - fitness KW - functional traits KW - invasion boundary KW - neutrality KW - predator-prey model KW - shape KW - trade-offs Y1 - 2017 U6 - https://doi.org/10.1002/ecy.2047 SN - 0012-9658 SN - 1939-9170 VL - 98 SP - 3188 EP - 3198 PB - Wiley CY - Hoboken ER -