TY - JOUR A1 - Stanke, Sandra A1 - Wenger, Christian A1 - Bier, Frank Fabian A1 - Hölzel, Ralph T1 - AC electrokinetic immobilization of influenza virus JF - Electrophoresis : microfluids & proteomics N2 - The use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup. Thus, by using merely electric fields, we demonstrate that the need of prior chemical surface modification could become obsolete. The accumulation of viral material over time is observed by fluorescence microscopy. The influences of side effects like electrothermal fluid flow, causing a fluid motion above the electrodes and causing an intensity gradient within the electrode array, are discussed. Due to the improved resolution by combining fluorescence microscopy with deconvolution, it is shown that the viral material is mainly drawn to the electrode edge and to a lesser extent to the electrode surface. Finally, areas of application for this functionalization technique are presented. KW - AC electrokinetics KW - AC electroosmosis KW - dielectrophoresis KW - influenza virus KW - nanoelectrodes Y1 - 2022 U6 - https://doi.org/10.1002/elps.202100324 SN - 0173-0835 SN - 1522-2683 VL - 43 IS - 12 SP - 1309 EP - 1321 PB - Wiley-Blackwell CY - Weinheim ER - TY - JOUR A1 - Prüfer, Mareike A1 - Wenger, Christian A1 - Bier, Frank Fabian A1 - Laux, Eva-Maria A1 - Hölzel, Ralph T1 - Activity of AC electrokinetically immobilized horseradish peroxidase JF - Electrophoresis : microfluidics, nanoanalysis & proteomics N2 - Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications. KW - AC electrokinetics KW - dielectrophoresis KW - enzyme activity KW - immobilization; KW - nanoelectrodes Y1 - 2022 U6 - https://doi.org/10.1002/elps.202200073 SN - 0173-0835 SN - 1522-2683 SP - 1920 EP - 1933 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Agarwal, Saloni A1 - Warmt, Christian A1 - Henkel, Jörg A1 - Schrick, Livia A1 - Nitsche, Andreas A1 - Bier, Frank Fabian T1 - Lateral flow-based nucleic acid detection of SARS-CoV-2 using enzymatic incorporation of biotin-labeled dUTP for POCT use JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - The degree of detrimental effects inflicted on mankind by the COVID-19 pandemic increased the need to develop ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable) POCT (point of care testing) to overcome the current and any future pandemics. Much effort in research and development is currently advancing the progress to overcome the diagnostic pressure built up by emerging new pathogens. LAMP (loop-mediated isothermal amplification) is a well-researched isothermal technique for specific nucleic acid amplification which can be combined with a highly sensitive immunochromatographic readout via lateral flow assays (LFA). Here we discuss LAMP-LFA robustness, sensitivity, and specificity for SARS-CoV-2 N-gene detection in cDNA and clinical swab-extracted RNA samples. The LFA readout is designed to produce highly specific results by incorporation of biotin and FITC labels to 11-dUTP and LF (loop forming forward) primer, respectively. The LAMP-LFA assay was established using cDNA for N-gene with an accuracy of 95.65%. To validate the study, 82 SARS-CoV-2-positive RNA samples were tested. Reverse transcriptase (RT)-LAMP-LFA was positive for the RNA samples with an accuracy of 81.66%; SARS-CoV-2 viral RNA was detected by RT-LAMP-LFA for as low as CT-33. Our method reduced the detection time to 15 min and indicates therefore that RT-LAMP in combination with LFA represents a promising nucleic acid biosensing POCT platform that combines with smartphone based semi-quantitative data analysis. KW - Point of care testing (POCT) KW - Lateral flow assay (LFA) KW - COVID-19 KW - Reverse transcription loop-mediated isothermal amplification (RT-LAMP); KW - SARS-CoV-2 N-gene Y1 - 2022 U6 - https://doi.org/10.1007/s00216-022-03880-4 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - 10 SP - 3177 EP - 3186 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Bognár, Zsófia A1 - Supala, Eszter A1 - Yarman, Aysu A1 - Zhang, Xiaorong A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. A1 - Gyurcsanyi, Róbert E. T1 - Peptide epitope-imprinted polymer microarrays for selective protein recognition BT - application for SARS-CoV-2 RBD protein JF - Chemical science / RSC, Royal Society of Chemistry N2 - We introduce a practically generic approach for the generation of epitope-imprinted polymer-based microarrays for protein recognition on surface plasmon resonance imaging (SPRi) chips. The SPRi platform allows the subsequent rapid screening of target binding kinetics in a multiplexed and label-free manner. The versatility of such microarrays, both as synthetic and screening platform, is demonstrated through developing highly affine molecularly imprinted polymers (MIPs) for the recognition of the receptor binding domain (RBD) of SARS-CoV-2 spike protein. A characteristic nonapeptide GFNCYFPLQ from the RBD and other control peptides were microspotted onto gold SPRi chips followed by the electrosynthesis of a polyscopoletin nanofilm to generate in one step MIP arrays. A single chip screening of essential synthesis parameters, including the surface density of the template peptide and its sequence led to MIPs with dissociation constants (K-D) in the lower nanomolar range for RBD, which exceeds the affinity of RBD for its natural target, angiotensin-convertase 2 enzyme. Remarkably, the same MIPs bound SARS-CoV-2 virus like particles with even higher affinity along with excellent discrimination of influenza A (H3N2) virus. While MIPs prepared with a truncated heptapeptide template GFNCYFP showed only a slightly decreased affinity for RBD, a single mismatch in the amino acid sequence of the template, i.e. the substitution of the central cysteine with a serine, fully suppressed the RBD binding. Y1 - 2021 U6 - https://doi.org/10.1039/d1sc04502d SN - 2041-6539 VL - 13 IS - 5 SP - 1263 EP - 1269 PB - Royal Society of Chemistry CY - Cambridge ER -