TY - THES A1 - Sommerfeld, Anja T1 - Quantification of internal variability of the arctic summer atmosphere based on HIRHAM5 ensemble simulations T1 - Quantifizierung der modellinternen Variabilität der Arktischen Sommeratmosphäre basierend auf HIRHAM5 Ensemblesimulationen N2 - The non-linear behaviour of the atmospheric dynamics is not well understood and makes the evaluation and usage of regional climate models (RCMs) difficult. Due to these non-linearities, chaos and internal variability (IV) within the RCMs are induced, leading to a sensitivity of RCMs to their initial conditions (IC). The IV is the ability of RCMs to realise different solutions of simulations that differ in their IC, but have the same lower and lateral boundary conditions (LBC), hence can be defined as the across-member spread between the ensemble members. For the investigation of the IV and the dynamical and diabatic contributions generating the IV four ensembles of RCM simulations are performed with the atmospheric regional model HIRHAM5. The integration area is the Arctic and each ensemble consists of 20 members. The ensembles cover the time period from July to September for the years 2006, 2007, 2009 and 2012. The ensemble members have the same LBC and differ in their IC only. The different IC are arranged by an initialisation time that shifts successively by six hours. Within each ensemble the first simulation starts on 1st July at 00 UTC and the last simulation starts on 5th July at 18 UTC and each simulation runs until 30th September. The analysed time period ranges from 6th July to 30th September, the time period that is covered by all ensemble members. The model runs without any nudging to allow a free development of each simulation to get the full internal variability within the HIRHAM5. As a measure of the model generated IV, the across-member standard deviation and the across-member variance is used and the dynamical and diabatic processes influencing the IV are estimated by applying a diagnostic budget study for the IV tendency of the potential temperature developed by Nikiema and Laprise [2010] and Nikiema and Laprise [2011]. The diagnostic budget study is based on the first law of thermodynamics for potential temperature and the mass-continuity equation. The resulting budget equation reveals seven contributions to the potential temperature IV tendency. As a first study, this work analyses the IV within the HIRHAM5. Therefore, atmospheric circulation parameters and the potential temperature for all four ensemble years are investigated. Similar to previous studies, the IV fluctuates strongly in time. Further, due to the fact that all ensemble members are forced with the same LBC, the IV depends on the vertical level within the troposphere, with high values in the lower troposphere and at 500 hPa and low values in the upper troposphere and at the surface. By the same reason, the spatial distribution shows low values of IV at the boundaries of the model domain. The diagnostic budget study for the IV tendency of potential temperature reveals that the seven contributions fluctuate in time like the IV. However, the individual terms reach different absolute magnitudes. The budget study identifies the horizontal and vertical ‘baroclinic’ terms as the main contributors to the IV tendency, with the horizontal ‘baroclinic’ term producing and the vertical ‘baroclinic’ term reducing the IV. The other terms fluctuate around zero, because they are small in general or are balanced due to the domain average. The comparison of the results obtained for the four different ensembles (summers 2006, 2007, 2009 and 2012) reveals that on average the findings for each ensemble are quite similar concerning the magnitude and the general pattern of IV and its contributions. However, near the surface a weaker IV is produced with decreasing sea ice extent. This is caused by a smaller impact of the horizontal 'baroclinic' term over some regions and by the changing diabatic processes, particularly a more intense reducing tendency of the IV due to condensative heating. However, it has to be emphasised that the behaviour of the IV and its dynamical and diabatic contributions are influenced mainly by complex atmospheric feedbacks and large-scale processes and not by the sea ice distribution. Additionally, a comparison with a second RCM covering the Arctic and using the same LBCs and IC is performed. For both models very similar results concerning the IV and its dynamical and diabatic contributions are found. Hence, this investigation leads to the conclusion that the IV is a natural phenomenon and is independent from the applied RCM. N2 - Das nicht-lineare Verhalten der atmosphärischen Dynamik ist noch immer nicht ausreichend verstanden und daher sind die Evaluierung und die Anwendung von regionalen Klimamodellen (RCM) schwierig. Aufgrund dieser Nicht-Linearitäten wird Chaos und modellinterne Variabilität (IV) in RCMs erzeugt, was zur Sensitivität der RCMs bezüglich ihrer Anfangsbedingungen führt. Die IV ist die Fähigkeit von RCMs, verschiedene Lösungen für Simulationen zu erzeugen, die sich in ihren Anfangsbedingungen unterschieden, aber die gleichen unteren und seitlichen Randbedingungen aufweisen. Daher kann die IV als die Spannweite zwischen den Ensemblemitgliedern definiert werden. Für die Untersuchung der IV und deren dynamische und diabatische Beiträge werden vier Ensembles mit dem atmosphärischen Regionalmodell HIRHAM5 erzeugt. Das Integrationsgebiet ist die Arktis und jedes Ensemble besteht aus 20 Ensemblemitgliedern. Die Ensembles umfassen den Zeitraum von Juli bis September für die Jahre 2006, 2007, 2009 und 2012. Die Mitglieder eines Ensembles haben alle die gleichen unteren und seitlichen Randbedingungen und unterscheiden sich nur in ihren Anfangsbedingungen. Die unterschiedlichen Anfangsbedingungen werden durch eine Verschiebung der Initialisierungszeit um jeweils 6 Stunden erzeugt. Innerhalb eines jeden Ensembles wird die erste Simulation am 1. Juli um 00 UTC gestartet und die letzte Simulation beginnt am 5. Juli um 18 UTC. Jede Simulation endet am 30. September. Um gleich lange Simulationen für die Auswertung zu gewährleisten, wird die Studie für den Zeitraum vom 6. Juli bis 30. September durchgeführt. Das Modell wird ohne Nudging betrieben, um jeder Simulation eine freie Entwicklung zu gewähren und damit die modellinterne Variabilität des HIRHAM5 vollständig zu erhalten. Als Maβ für die im Modell generierte IV wird die Standardabweichung und die Varianz zwischen den Ensemblemitgliedern bestimmt. Die die IV beeinflussenden dynamischen und diabatischen Prozesse werden mit Hilfe der diagnostischen Budgetstudie zur Berechnung der IV Tendenz der potentiellen Temperatur bestimmt. Diese diagnostische Budgetstudie wurde von Nikiema and Laprise [2010] und Nikiema and Laprise [2011] entwickelt und basiert auf dem ersten Hauptsatz der Thermodynamik für die potentielle Temperatur und der Massenkontinuitätsgleichung. Aus der resultierenden Budgetgleichung können sieben Terme, die zu der Tendenz der potentiellen Temperatur beitragen, berechnet werden. In dieser Arbeit wird erstmalig die IV des HIRHAM5 analysiert. Dafür werden Parameter der atmosphärischen Zirkulation und die potentiellen Temperatur für alle vier Ensemblejahre analysiert. Wie auch frühere Studien zeigten, schwankt die IV stark mit der Zeit. Auβerdem wird eine vertikale Abhängigkeit der IV innerhalb der Troposphäre gefunden, mit hohen Werten in der unteren Troposphäre und in 500 hPa. Geringe Werte hingegen treten in der oberen Troposphäre und am Erdboden auf, da alle Ensemblemitglieder mit den gleichen Randbedingungen angetrieben werden. Daher zeigt auch die räumliche Verteilung niedrige IV Werte am Rand des Modellgebietes. Die diagnostische Budgetstudie für die IV Tendenz der potentiellen Temperatur verdeutlicht, dass die sieben Beiträge ebenfalls mit der Zeit schwanken wie die IV selbst. Jedoch erreichen die einzelnen Terme unterschiedliche Intensitäten. Mit Hilfe der Budgetstudie können der horizontale und vertikale 'Baroklinitätsterm' als die wichtigsten Beiträge zur Tendenz der IV ermittelt werden. Dabei trägt der horizontale 'Baroklinitätsterm' zur Produktion und der vertikale 'Baroklinitätsterm' zur Reduktion der IV bei. Die anderen Beiträge schwanken um Null, weil sie an sich klein oder aufgrund des Gebietsmittels ausbalanciert sind. Der Vergleich der Resultate für die Ensembles untereinander (Sommer 2006, 2007, 2009 und 2012) führt zu der Erkenntnis, das im Mittel die Ergebnisse für die IV und ihre Beiträge, die Gröβenordnung und die Muster betreffend, sehr ähnlich sind. Nur nahe der Erdoberfläche wird mit abnehmender Meereisausdehnung eine schwächere IV generiert. Dies ist bedingt durch einen geringeren Einfluss des horizontale 'Baroklinitätsterms' der in manchen Region auftritt sowie durch die sich ändernden diabatischen Prozesse (Tendenz zur intensiveren Reduktion der IV) aufgrund von Erwärmung durch Kondensation. Jedoch ist das Verhalten der IV und ihrer dynamischen und diabatischen Beiträge durch komplexe atmosphärische Rückkopplungen und groβskaligen Prozessen beeinflusst und nicht nur durch die Meereisverteilung. Des Weiteren wird ein Vergleich mit einem zweiten RCM durchgeführt. Dieses zweite RCM wird mit den selben unteren und seitlichen Randbedingungen und Anfangsbedingungen angetrieben wie das HIRHAM5. Für beide Modelle werden sehr ähnliche Ergebnisse für die IV und ihre dynamischen und diabatischen Beiträge gefunden. Daher führt die Untersuchung zu dem Schluss, dass die IV ein natürlichen Phänomen und damit unabhängig von dem verwendeten RCM ist. KW - internal variability KW - modellinterne Variabilitaet KW - regional climate model KW - regionales Klimamodell KW - ensemble simulations KW - Ensemblesimulationen KW - arctic KW - Arktis KW - budget study KW - Budgetstudie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85347 ER - TY - THES A1 - Polanski, Stefan T1 - Simulation der indischen Monsunzirkulation mit dem Regionalen Klimamodell HIRHAM T1 - Simulation of the Indian Monsoon Circulation with the regional climate model HIRHAM N2 - In dieser Arbeit wird das regionale Klimamodell HIRHAM mit einer horizontalen Auflösung von 50 km und 19 vertikalen Schichten erstmals auf den asiatischen Kontinent angewendet, um die indische Monsunzirkulation unter rezenten und paläoklimatischen Bedingungen zu simulieren. Das Integrationsgebiet des Modells erstreckt sich von etwa 0ºN - 50ºN und 42ºE - 110ºE und bedeckt dabei sowohl die hohe Topographie des Himalajas und Tibet Plateaus als auch den nördlichen Indischen Ozean. Das Ziel besteht in der Beschreibung der regionalen Kopplung zwischen der Monsunzirkulation und den orographischen sowie diabatischen Antriebsmechanismen. Eine 44-jährige Modellsimulation von 1958-2001, die am seitlichen und unteren Rand von ECMWF Reanalysen (ERA40) angetrieben wird, bildet die Grundlage für die Validierung der Modellergebnisse mit Beobachtungen auf der Basis von Stations- und Gitterdatensätzen. Der Fokus liegt dabei auf der atmosphärischen Zirkulation, der Temperatur und dem Niederschlag im Sommer- und Wintermonsun, wobei die Qualität des Modells sowohl in Bezug zur langfristigen und dekadischen Klimatologie als auch zur interannuellen Variabilität evaluiert wird. Im Zusammenhang mit einer realistischen Reproduktion der Modelltopographie kann für die Muster der Zirkulation und Temperatur eine gute Übereinstimmung zwischen Modell und Daten nachgewiesen werden. Der simulierte Niederschlag zeigt eine bessere Übereinstimmung mit einem hoch aufgelösten Gitterdatensatz über der Landoberfläche Zentralindiens und in den Hochgebirgsregionen, der den Vorteil des Regionalmodells gegenüber der antreibenden Reanalyse hervorhebt. In verschiedenen Fall- und Sensitivitätsstudien werden die wesentlichen Antriebsfaktoren des indischen Monsuns (Meeresoberflächentemperaturen, Stärke des winterlichen Sibirischen Hochs und Anomalien der Bodenfeuchte) untersucht. Die Ergebnisse machen deutlich, dass die Simulation dieser Mechanismen auch mit einem Regionalmodell sehr schwierig ist, da die Komplexität des Monsunsystems hochgradig nichtlinear ist und die vor allem subgridskalig wirkenden Prozesse im Modell noch nicht ausreichend parametrisiert und verstanden sind. Ein paläoklimatisches Experiment für eine 44-jährige Zeitscheibe im mittleren Holozän (etwa 6000 Jahre vor heute), die am Rand von einer globalen ECHAM5 Simulation angetrieben wird, zeigt markante Veränderungen in der Intensität des Monsuns durch die unterschiedliche solare Einstrahlung, die wiederum Einflüsse auf die SST, die Zirkulation und damit auf die Niederschlagsmuster hat. N2 - In this study the regional climate model HIRHAM with a horizontal resolution of 50 km and 19 vertical levels is applied over the Asian continent to simulate the Indian monsoon circulation under present-day and past conditions. The integration domain extends from 0ºN - 50ºN and 42ºE - 110ºE and covers the high topography of Himalayas and Tibetan Plateau as well as the northern Indian Ocean. The main objective is the description of the regional coupling between monsoon circulation and orographic as well as thermal driving mechanisms of monsoon. A 44-years long simulation from 1958-2001, driven at the lateral and lower boundaries by European reanalysis (ERA40), is the basis for the validation of model results with observations based on station and gridded data sets. The focus is on the the long-term and decadal summer and winter monsoon climatology and its variability concerning atmospheric circulation, temperature and precipitation. The results successfully reproduce the observations due to a realistic simulation of topographic features. The simulated precipitation shows a better agreement with a high-resolution gridded data set over the central land areas of India and in the higher elevated Tibetan and Himalayan regions than ERA40. In different case and sensitivity studies the main driving mechanisms of the Indian monsoon (Sea Surface Temperatures, strength of the Siberian High in winter and soil moisture anomalies) are investigated. The results show, that the simulation of these mechanisms with a regional climate model is also difficult related to the complex non linear monsoon system and the small-scale processes, which are not just sufficiently parameterized and understood in the model. A paleoclimatic experiment for a 44-years long time slice in mid-holocene (6000 years before present), which is driven by a global ECHAM5 simulation, shows significant changes in the monsoon intensity due to the different solar forcing, which influences the SST, the circulation and the precipitation. KW - Indische Monsunzirkulation KW - regionales Klimamodell KW - Indian Monsoon Circulation KW - Regional Climate Model Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52508 ER -