TY - JOUR A1 - Maiti, Snehanshu A1 - Makwana, Kirit A1 - Zhang, Heshou A1 - Yan, Huirong T1 - Cosmic-ray transport in magnetohydrodynamic turbulence JF - The astrophysical journal : an international review of spectroscopy and astronomical physics / part 1 N2 - This paper studies cosmic-ray (CR) transport in magnetohydrodynamic (MHD) turbulence. CR transport is strongly dependent on the properties of the magnetic turbulence. We perform test particle simulations to study the interactions of CR with both total MHD turbulence and decomposed MHD modes. The spatial diffusion coefficients and the pitch angle scattering diffusion coefficients are calculated from the test particle trajectories in turbulence. Our results confirm that the fast modes dominate the CR propagation, whereas Alfven and slow modes are much less efficient and have shown similar pitch-angle scattering rates. We investigate the cross field transport on large and small scales. On large/global scales, normal diffusion is observed and the diffusion coefficient is suppressed by M-A(zeta) compared to the parallel diffusion coefficients, with zeta closer to 4 in Alfven modes than that in total turbulence, as theoretically expected. For the CR transport on scales smaller than the turbulence injection scale, both the local and global magnetic reference frames are adopted. Superdiffusion is observed on such small scales in all the cases. Particularly, CR transport in Alfven modes show clear Richardson diffusion in the local reference frame. The diffusion transitions smoothly from the Richardson's one with index 1.5 to normal diffusion as the particle mean free path decreases from lambda(parallel to) >> L to lambda(parallel to) << L, where L is the injection/coherence length of turbulence. Our results have broad applications to CRs in various astrophysical environments. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac46c8 SN - 1538-4357 VL - 926 IS - 1 PB - Institute of Physics Publ. CY - London ER - TY - JOUR A1 - Zhang, Heshou A1 - Yan, Huirong T1 - Polarization of submillimetre lines from interstellar medium JF - Monthly notices of the Royal Astronomical Society N2 - Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy. KW - polarization KW - turbulence KW - H II regions KW - ISM: magnetic fields KW - photodissociation region (PDR) KW - submillimetre: ISM Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3164 SN - 0035-8711 SN - 1365-2966 VL - 475 IS - 2 SP - 2415 EP - 2420 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Liu, Ruo-Yu A1 - Yan, Huirong A1 - Zhang, Heshou T1 - Role of Anisotropic Diffusion of Particles JF - Physical review letters N2 - In this Letter, we propose that the x-ray and the TeV observations in the vicinity of Geminga can be understood in the framework of anisotropic diffusion of injected electrons or positrons. This interpretation only requires the turbulence in the vicinity of Geminga to be sub-Alfvenic with the local mean magnetic field direction approximately aligned with our line of sight towards Geminga, without invoking extreme conditions for the environment, such as an extremely small diffusion coefficient and a weak magnetic field of submicrogauss as suggested in previous literature. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevLett.123.221103 SN - 0031-9007 SN - 1079-7114 VL - 123 IS - 22 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Zhang, Heshou A1 - Yan, Huirong A1 - Richter, Philipp T1 - The influence of atomic alignment on absorption and emission spectroscopy JF - Monthly notices of the Royal Astronomical Society N2 - Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in our Universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionization fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of Photodissociation regions in rho Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability. KW - magnetic fields KW - submillimetre: ISM KW - ultraviolet: ISM KW - ISM: abundances KW - ISM: lines and bands KW - techniques: spectroscopic Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1594 SN - 0035-8711 SN - 1365-2966 VL - 479 IS - 3 SP - 3923 EP - 3935 PB - Oxford Univ. Press CY - Oxford ER -