TY - JOUR A1 - Altintas, Zeynep A1 - Takiden, Aref A1 - Utesch, Tillmann A1 - Mroginski, Maria A. A1 - Schmid, Bianca A1 - Scheller, Frieder W. A1 - Süssmuth, Roderich D. T1 - Integrated approaches toward high-affinity artificial protein binders obtained via computationally simulated epitopes for protein recognition JF - Advanced functional materials N2 - Widely used diagnostic tools make use of antibodies recognizing targeted molecules, but additional techniques are required in order to alleviate the disadvantages of antibodies. Herein, molecular dynamic calculations are performed for the design of high affinity artificial protein binding surfaces for the recognition of neuron specific enolase (NSE), a known cancer biomarker. Computational simulations are employed to identify particularly stabile secondary structure elements. These epitopes are used for the subsequent molecular imprinting, where surface imprinting approach is applied. The molecular imprints generated with the calculated epitopes of greater stability (Cys-Ep1) show better binding properties than those of lower stability (Cys-Ep5). The average binding strength of imprints created with stabile epitopes is found to be around twofold and fourfold higher for the NSE derived peptide and NSE protein, respectively. The recognition of NSE is investigated in a wide concentration range, where high sensitivity (limit of detection (LOD) = 0.5 ng mL(-1)) and affinity (dissociation constant (K-d) = 5.3 x 10(-11)m) are achieved using Cys-Ep1 imprints reflecting the stable structure of the template molecules. This integrated approach employing stability calculations for the identification of stabile epitopes is expected to have a major impact on the future development of high affinity protein capturing binders. KW - artificial protein binders KW - cancer markers KW - computationally simulated epitopes KW - molecular imprinting KW - protein recognition Y1 - 2019 U6 - https://doi.org/10.1002/adfm.201807332 SN - 1616-301X SN - 1616-3028 VL - 29 IS - 15 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Reyna-González, Emmanuel A1 - Schmid, Bianca A1 - Petras, Daniel A1 - Süssmuth, Roderich D. A1 - Dittmann, Elke T1 - Leader Peptide-Free In Vitro Reconstitution of Microviridin Biosynthesis Enables Design of Synthetic Protease-Targeted Libraries JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Microviridins are a family of ribosomally synthesized and post-translationally modified peptides with a highly unusual architecture featuring non-canonical lactone as well as lactam rings. Individual variants specifically inhibit different types of serine proteases. Here we have established an efficient in vitro reconstitution approach based on two ATP-grasp ligases that were constitutively activated using covalently attached leader peptides and a GNAT-type N-acetyltransferase. The method facilitates the efficient in vitro one-pot transformation of microviridin core peptides to mature microviridins. The engineering potential of the chemo-enzymatic technology was demonstrated for two synthetic peptide libraries that were used to screen and optimize microviridin variants targeting the serine proteases trypsin and subtilisin. Successive analysis of intermediates revealed distinct structure-activity relationships for respective target proteases. KW - biosynthesis KW - cyanobacteria KW - microviridins KW - natural products KW - peptides Y1 - 2016 U6 - https://doi.org/10.1002/anie.201604345 SN - 1433-7851 SN - 1521-3773 VL - 55 SP - 9398 EP - 9401 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dehm, Daniel A1 - Krumbholz, Julia A1 - Baunach, Martin A1 - Wiebach, Vincent A1 - Hinrichs, Katrin A1 - Guljamow, Arthur A1 - Tabuchi, Takeshi A1 - Jenke-Kodama, Holger A1 - Süssmuth, Roderich D. A1 - Dittmann-Thünemann, Elke T1 - Unlocking the spatial control of secondary metabolism uncovers hidden natural product diversity in nostoc punctiforme JF - ACS chemical biology N2 - Filamentous cyanobacteria belong to the most prolific producers of structurally unique and biologically active natural products, yet the majority of biosynthetic gene clusters predicted for these multicellular collectives are currently orphan. Here, we present a systems analysis of secondary metabolite gene expression in the model strain Nostoc punctiforme PCC73102 using RNA-seq and fluorescence reporter analysis. Our data demonstrate that the majority of the cryptic gene clusters are not silent but are expressed with regular or sporadic pattern. Cultivation of N. punctiforme using high-density fermentation overrules the spatial control and leads to a pronounced upregulation of more than 50% of biosynthetic gene clusters. Our data suggest that a combination of autocrine factors, a high CO2 level, and high light account for the upregulation of individual pathways. Our overarching study not only sheds light on the strategies of filamentous cyanobacteria to share the enormous metabolic burden connected with the production of specialized molecules but provides an avenue for the genome-based discovery of natural products in multicellular cyanobacteria as exemplified by the discovery of highly unusual variants of the tricyclic peptide microviridin. Y1 - 2019 U6 - https://doi.org/10.1021/acschembio.9b00240 SN - 1554-8929 SN - 1554-8937 VL - 14 IS - 6 SP - 1271 EP - 1279 PB - American Chemical Society CY - Washington ER -