TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Bürger, Gerd A1 - Vormoor, Klaus Josef T1 - Meteorological and hydrological drought assessment in Lake Malawi and Shire River basins (1970-2013) JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - The study assesses the variability and trends of both meteorological and hydrological droughts from 1970 to 2013 in Lake Malawi and Shire River basins using the standardized precipitation index (SPI) and standardized precipitation and evaporation index (SPEI) for meteorological droughts and the lake level change index (LLCI) for hydrological droughts. Trends and slopes in droughts and drought drivers are estimated using Mann-Kendall test and Sen's slope, respectively. Results suggest that meteorological droughts are increasing due to a decrease in precipitation which is exacerbated by an increase in temperature (potential evapotranspiration). The hydrological system of Lake Malawi seems to have a >24-month memory towards meteorological conditions, since the 36-month SPEI can predict hydrological droughts 10 months in advance. The study has found the critical lake level that would trigger hydrological drought to be 474.1 m a.s.l. The increase in drought is a concern as this will have serious impacts on water resources and hydropower supply in Malawi. KW - Lake Malawi basin KW - Shire River basin KW - meteorological drought KW - hydrological drought KW - SPEI KW - SPI KW - trend analysis Y1 - 2020 U6 - https://doi.org/10.1080/02626667.2020.1837384 SN - 0262-6667 SN - 2150-3435 VL - 65 IS - 16 SP - 2750 EP - 2764 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Shrestha, Pallav A1 - Kadewere, Peter A1 - Vormoor, Klaus Josef T1 - Susceptibility of water resources and hydropower production to climate change in the tropics BT - the case of Lake Malawi and Shire River Basins, SE Africa JF - Hydrology : open access journal N2 - The sensitivity of key hydrologic variables and hydropower generation to climate change in the Lake Malawi and Shire River basins is assessed. The study adapts the mesoscale Hydrological Model (mHM) which is applied separately in the Upper Lake Malawi and Shire River basins. A particular Lake Malawi model, which focuses on reservoir routing and lake water balance, has been developed and is interlinked between the two basins. Climate change projections from 20 Coordinated Regional Climate Downscaling Experiment (CORDEX) models for Africa based on two scenarios (RCP4.5 and RCP8.5) for the periods 2021-2050 and 2071-2100 are used. An annual temperature increase of 1 degrees C decreases mean lake level and outflow by 0.3 m and 17%, respectively, signifying the importance of intensified evaporation for Lake Malawi's water budget. Meanwhile, a +5% (-5%) deviation in annual rainfall changes mean lake level by +0.7 m (-0.6 m). The combined effects of temperature increase and rainfall decrease result in significantly lower flows in the Shire River. The hydrological river regime may change from perennial to seasonal with the combination of annual temperature increase and precipitation decrease beyond 1.5 degrees C (3.5 degrees C) and -20% (-15%). The study further projects a reduction in annual hydropower production between 1% (RCP8.5) and 2.5% (RCP4.5) during 2021-2050 and between 5% (RCP4.5) and 24% (RCP8.5) during 2071-2100. The results show that it is of great importance that a further development of hydro energy on the Shire River should take into account the effects of climate change, e.g., longer low flow periods and/or higher discharge fluctuations, and thus uncertainty in the amount of electricity produced. KW - Lake Malawi Basin KW - Shire River Basin KW - lake water balance KW - climate change impacts in the tropics KW - hydropower generation KW - response surface analysis KW - sensitivity analysis Y1 - 2020 U6 - https://doi.org/10.3390/hydrology7030054 SN - 2306-5338 VL - 7 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in Water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021–2050) and far-term period (2071–2100) with reference to 1976–2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021–2050 and between +131 and +388% during 2071–2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 SP - 1 EP - 16 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021-2050) and far-term period (2071-2100) with reference to 1976-2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021-2050 and between +131 and +388% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought KW - events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern KW - Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 VL - 4 PB - Frontiers Media CY - Lausanne ER -