TY - JOUR A1 - Koopman, Wouter-Willem Adriaan A1 - Natali, Marco A1 - Donati, Giovanni P. A1 - Muccini, Michele A1 - Toffanin, Stefano T1 - Charge-exciton interaction rate in organic field-effect transistors by means of transient photoluminescence electromodulated spectroscopy JF - ACS photonics N2 - Organic light-emitting transistors (OLETs) offer a huge potential for the design of highly integrated multifunctional optoelectronic systems and of intense nano scale light sources, such as the long-searched-for electrically pumped organic laser. In order to fulfill these promises, the efficiency and brightness of the current state-of-the-art devices have to be increased significantly. The dominating quenching process limiting the external quantum efficiency in OLETs is charge-exciton interaction. A comprehensive understanding of this quenching process is therefore of paramount importance. The present article reports a systematic investigation of charge-exciton interaction in organic transistors employing time resolved photoluminescence electro-modulation (PLEM) spectroscopy on the picosecond time scale. The results show that the injected charges reduce the exciton radiative recombination in two ways: (i) charges may prevent the generation of excitons and (ii) charges activate a further nonradiative channel for the exciton decay. Moreover, the transient PLEM measurements clearly reveal that not only trapped charges, as already reported in literature, but rather the entire injected charge density contributes to the quenching of the exciton population. KW - photoluminescence quenching KW - charge density KW - exciton dynamics KW - organic KW - field-effect transistor KW - light emission KW - optical spectroscopy Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00573 SN - 2330-4022 VL - 4 IS - 2 SP - 282 EP - 291 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Koopman, Wouter-Willem Adriaan A1 - Natali, Marco A1 - Bettini, Cristian A1 - Melucci, Manuela A1 - Muccini, Michele A1 - Toffanin, Stefano T1 - Contact Resistance in Ambipolar Organic Field-Effect Transistors Measured by Confocal Photoluminescence Electro-Modulation Microscopy JF - ACS applied materials & interfaces N2 - Although it is theoretically expected that all organic semiconductors support ambipolar charge transport, most organic transistors either transport holes or electrons effectively. Single-layer ambipolar organic field-effect transistors enable the investigation of different mechanisms in hole and electron transport in a single device since the device architecture provides a controllable planar pn-junction within the transistor channel. However, a direct comparison of the injection barriers and of the channel conductivities between electrons and holes within the same device cannot be measured by standard electrical characterization. This article introduces a novel approach for determining threshold gate voltages for the onset of the ambipolar regime from the position of the pn-junction observed by photoluminescence electromodulation (PLEM) microscopy. Indeed, the threshold gate voltage in the ambipolar bias regime considers a vanishing channel length, thus correlating the contact resistance. PLEM microscopy is a valuable tool to directly compare the contact and channel resistances for both carrier types in the same device. The reported results demonstrate that designing the metal/organic semiconductor interfaces by aligning the bulk metal Fermi levels to the highest occupied molecular orbital or lowest unoccupied molecular orbital levels of the organic semiconductors is a too simplistic approach for optimizing the charge injection process in organic field-effect devices. KW - electro-modulation microscopy KW - organic field-effect transistors KW - threshold voltages KW - contact resistance KW - photoluminescence Y1 - 2018 U6 - https://doi.org/10.1021/acsami.8b05518 SN - 1944-8244 VL - 10 IS - 41 SP - 35411 EP - 35419 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Sander, Mathias A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic Reactions JF - ACS applied materials & interfaces KW - gold nanotriangles KW - monolayer formation KW - SERS KW - dimerization KW - heat measurement Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b07231 SN - 1944-8244 VL - 9 SP - 20247 EP - 20253 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mitzscherling, Steffen A1 - Cui, Q. A1 - Koopman, Wouter-Willem Adriaan A1 - Bargheer, Matias T1 - Dielectric function of two-phase colloid-polymer nanocomposite JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The plasmon resonance of metal nanoparticles determines their optical response in the visible spectral range. Many details such as the electronic properties of gold near the particle surface and the local environment of the particles influence the spectra. We show how the cheap but highly precise fabrication of composite nanolayers by spin-assisted layer-by-layer deposition of polyelectrolytes can be used to investigate the spectral response of gold nanospheres (GNS) and gold nanorods (GNR) in a self-consistent way, using the established Maxwell-Garnett effective medium (MGEM) theory beyond the limit of homogeneous media. We show that the dielectric function of gold nanoparticles differs from the bulk value and experimentally characterize the shape and the surrounding of the particles thoroughly by SEM, AFM and ellipsometry. Averaging the dielectric functions of the layered surrounding by an appropriate weighting with the electric field intensity yields excellent agreement for the spectra of several nanoparticles and nanorods with various cover-layer thicknesses. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp04326c SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 44 SP - 29465 EP - 29474 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Koopman, Wouter-Willem Adriaan A1 - Muccini, Michele A1 - Toffanin, Stefano T1 - High-resolution photoluminescence electro-modulation microscopy by scanning lock-in JF - Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques N2 - Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5010281 SN - 0034-6748 SN - 1089-7623 VL - 89 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Pudell, Jan-Etienne A1 - Stete, Felix A1 - Rössle, Matthias A1 - Herzog, Marc A1 - Schmitt, Clemens Nikolaus Zeno A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - Scaling up nanoplasmon catalysis BT - the role of heat dissipation JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Nanoscale heating by optical excitation of plasmonic nanoparticles offers a new perspective of controlling chemical reactions, where heat is not spatially uniform as in conventional macroscopic heating but strong temperature gradients exist around microscopic hot spots. In nanoplasmonics, metal particles act as a nanosource of light, heat, and energetic electrons driven by resonant excitation of their localized surface plasmon resonance. As an example of the coupling reaction of 4-nitrothiophenol into 4,4′-dimercaptoazobenzene, we show that besides the nanoscopic heat distribution at hot spots, the microscopic distribution of heat dictated by the spot size of the light focus also plays a crucial role in the design of plasmonic nanoreactors. Small sizes of laser spots enable high intensities to drive plasmon-assisted catalysis. This facilitates the observation of such reactions by surface-enhanced Raman scattering, but it challenges attempts to scale nanoplasmonic chemistry up to large areas, where the excess heat must be dissipated by one-dimensional heat transport. KW - Gold KW - Raman spectroscopy KW - Silicon KW - Irradiation KW - Lasers Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.8b12574 SN - 1932-7447 VL - 123 IS - 14 SP - 9352 EP - 9357 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stete, Felix A1 - Koopman, Wouter-Willem Adriaan A1 - Bargheer, Matias T1 - Signatures of strong coupling on nanoparticles BT - revealing absorption anticrossing by tuning the dielectric environment JF - ACS Photonics N2 - In the strong coupling regime, exciton and plasmon excitations are hybridized into combined system excitations. The correct identification of the coupling regime in these systems is currently debated, from both experimental and theoretical perspectives. In this article we show that the extinction spectra may show a large peak splitting, although the energy loss encoded in the absorption spectra clearly rules out the strong coupling regime. We investigate the coupling of J-aggregate excitons to the localized surface plasmon polaritons on gold nanospheres and nanorods by fine-tuning the plasmon resonance via layer-by-layer deposition of polyelectrolytes. While both structures show a characteristic anticrossing in extinction and scattering experiments, the careful assessment of the systems’ light absorption reveals that strong coupling of the plasmon to the exciton is not present in the nanosphere system. In a phenomenological model of two classical coupled oscillators, a Fano-like regime causes only the resonance of the light-driven oscillator to split up, while the other one still dissipates energy at its original frequency. Only in the strong-coupling limit do both oscillators split up the frequencies at which they dissipate energy, qualitatively explaining our experimental finding. KW - hybrid nanoparticles KW - exciton plasmon coupling KW - layer-by-layer deposition KW - strong coupling KW - absorption measurements Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.7b00113 SN - 2330-4022 VL - 4 SP - 1669 EP - 1676 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stete, Felix A1 - Schossau, Phillip A1 - Bargheer, Matias A1 - Koopman, Wouter-Willem Adriaan T1 - Size-Dependent coupling of Hybrid Core-Shell Nanorods BT - Toward Single-Emitter Strong-Coupling JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Owing to their ability of concentrating electromagnetic fields to subwavelength mode volumes, plasmonic nanoparticles foster extremely high light-matter coupling strengths reaching far into the strong-coupling regime of light matter interaction. In this article, we present an experimental investigation on the dependence of coupling strength on the geometrical size of the nanoparticle. The coupling strength for differently sized hybrid plasmon-core exciton-shell nanorods was extracted from the typical resonance anticrossing of these systems, obtained by controlled modification of the environment permittivity using layer-by-layer deposition of polyelectrolytes. The observed size dependence of the coupling strength can be explained by a simple model approximating the electromagnetic mode volume by the geometrical volume of the particle. On the basis of this model, the coupling strength for particles of arbitrary size can be predicted, including the particle size necessary to support single-emitter strong coupling. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b04204 SN - 1932-7447 VL - 122 IS - 31 SP - 17976 EP - 17982 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhao, Yuhang A1 - Sarhan, Radwan Mohamed A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Schmidt, Bernd A1 - Koopman, Wouter-Willem Adriaan A1 - Lu, Yan T1 - Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance JF - ACS applied materials & interfaces N2 - Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration. KW - Au-Pd nanorods KW - PDA KW - photothermal conversion KW - surface plasmon KW - 4-nitrophenol Y1 - 2022 U6 - https://doi.org/10.1021/acsami.2c00221 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 15 SP - 17259 EP - 17272 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Schmid, Thomas A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol JF - Scientific Reports N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - enhanced raman-scattering KW - charge-transfer KW - metal KW - nanoparticles KW - catalysis KW - AU KW - 4-nitrobenzenethiol KW - aminothiophenol KW - photocatalysis KW - wavelength Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER -