TY - JOUR A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analia M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - Lopez-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andres A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Luis Aguilar, Jose A1 - MacPhee, Ross D. E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica JF - Nature Communications N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. Y1 - 2017 U6 - https://doi.org/10.1038/ncomms15951 SN - 2041-1723 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Westbury, Michael V. A1 - Dalerumb, Fredrik A1 - Noren, Karin A1 - Hofreiter, Michael T1 - Complete mitochondrial genome of a bat-eared fox (Otocyon megalotis), along with phylogenetic considerations JF - Mitochondrial DNA. Part B N2 - The bat-eared fox, Otocyon megalotis, is the only member of its genus and is thought to occupy a basal position within the dog family. These factors can lead to challenges in complete mitochondrial reconstructions and accurate phylogenetic positioning. Here, we present the first complete mitochondrial genome of the bat-eared fox recovered using shotgun sequencing and iterative mapping to three distantly related species. Phylogenetic analyses placed the bat-eared fox basal in the Canidae family within the clade including true foxes (Vulpes) and the raccoon dog (Nyctereutes) with high support values. This position is in good agreement with previously published results based on short fragments of mitochondrial and nuclear genes, therefore adding more support to the basal positioning of the bat-eared fox within Canidae. KW - Phylogenetics KW - mitochondria KW - iterative mapping KW - Canidae Y1 - 2017 U6 - https://doi.org/10.1080/23802359.2017.1331325 SN - 2380-2359 VL - 2 IS - 1 SP - 298 EP - 299 PB - Routledge, Taylor & Francis Group CY - London ER - TY - GEN A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1059 KW - multiple sequence alignment KW - Oxidase Subunit-I KW - mitochondrial genome KW - control region KW - Ribosomal-RNA KW - asellota crustacea KW - gammarus crustacea KW - deep-sea KW - DNA KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460792 SN - 1866-8372 IS - 1059 ER - TY - JOUR A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) JF - Scientific reports N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-25225-x SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barnett, Ross A1 - Gilbert, M. Thomas P. A1 - Zepeda-Mendoza, M. Lisandra A1 - Reumer, Jelle W. F. A1 - de Vos, John A1 - Zazula, Grant A1 - Nagel, Doris A1 - Baryshnikov, Gennady F. A1 - Leonard, Jennifer A. A1 - Rohland, Nadin A1 - Westbury, Michael V. A1 - Barlow, Axel A1 - Hofreiter, Michael T1 - Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics JF - Current biology N2 - Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (similar to 18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Y1 - 2017 U6 - https://doi.org/10.1016/j.cub.2017.09.033 SN - 0960-9822 SN - 1879-0445 VL - 27 SP - 3330 EP - + PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Westbury, Michael V. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Wiesel, Ingrid A1 - Leo, Viyanna A1 - Welch, Rebecca A1 - Parker, Daniel M. A1 - Sicks, Florian A1 - Ludwig, Arne A1 - Dalen, Love A1 - Hofreiter, Michael T1 - Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena JF - Molecular biology and evolution N2 - Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species. KW - evolution KW - hyena KW - genomics KW - population genomics KW - diversity Y1 - 2018 U6 - https://doi.org/10.1093/molbev/msy037 SN - 0737-4038 SN - 1537-1719 VL - 35 IS - 5 SP - 1225 EP - 1237 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Westbury, Michael V. A1 - Prost, Stefan A1 - Seelenfreund, Andrea A1 - Ramirez, Jose-Miguel A1 - Matisoo-Smith, Elizabeth A. A1 - Knapp, Michael T1 - First complete mitochondrial genome data from ancient South American camelids - The mystery of the chilihueques from Isla Mocha (Chile) JF - Scientific reports Y1 - 2016 U6 - https://doi.org/10.1038/srep38708 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Barnett, Ross A1 - Westbury, Michael V. A1 - Sandoval-Velasco, Marcela A1 - Vieira, Filipe Garrett A1 - Jeon, Sungwon A1 - Zazula, Grant A1 - Martin, Michael D. A1 - Ho, Simon Y. W. A1 - Mather, Niklas A1 - Gopalakrishnan, Shyam A1 - Ramos-Madrigal, Jazmin A1 - de Manuel, Marc A1 - Zepeda-Mendoza, M. Lisandra A1 - Antunes, Agostinho A1 - Baez, Aldo Carmona A1 - De Cahsan, Binia A1 - Larson, Greger A1 - O'Brien, Stephen J. A1 - Eizirik, Eduardo A1 - Johnson, Warren E. A1 - Koepfli, Klaus-Peter A1 - Wilting, Andreas A1 - Fickel, Jörns A1 - Dalen, Love A1 - Lorenzen, Eline D. A1 - Marques-Bonet, Tomas A1 - Hansen, Anders J. A1 - Zhang, Guojie A1 - Bhak, Jong A1 - Yamaguchi, Nobuyuki A1 - Gilbert, M. Thomas P. T1 - Genomic adaptations and evolutionary history of the extinct scimitar-toothed cat BT - Homotherium latidens JF - Current biology N2 - Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a -7x nuclear genome and a similar to 38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (similar to 22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage. Y1 - 2020 U6 - https://doi.org/10.1016/j.cub.2020.09.051 SN - 0960-9822 SN - 1879-0445 VL - 30 IS - 24 PB - Cell Press CY - Cambridge ER - TY - CHAP A1 - Hofreiter, Michael A1 - Barlow, Axel A1 - Paijmans, Johanna L. A. A1 - Westbury, Michael V. T1 - Genomic analyses from highly degraded DNA T2 - Genome Y1 - 2015 SN - 0831-2796 SN - 1480-3321 VL - 58 IS - 5 SP - 228 EP - 228 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Cahsan, Binia De A1 - Westbury, Michael V. A1 - Paraskevopoulou, Sofia A1 - Drews, Hauke A1 - Ott, Moritz A1 - Gollmann, Günter A1 - Tiedemann, Ralph T1 - Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian JF - Evolutionary Applications N2 - Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany. KW - adaptive introgression KW - admixture KW - Bombina bombina KW - genetic rescue KW - mitogenomes KW - transcriptomics Y1 - 2020 SN - 1752-4563 VL - 14 IS - 6 PB - John Wiley & Sons, Inc. CY - New Jersey ER -