TY - JOUR A1 - Munyaev, Vyacheslav O. A1 - Smirnov, Lev A. A1 - Kostin, Vasily A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New journal of physics : the open-access journal for physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto KW - model KW - noisy systems Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab6f93 SN - 1367-2630 VL - 22 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New Journal of Physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 VL - 22 IS - 2 PB - Springer Science CY - New York ER - TY - JOUR A1 - Osipov, Grigory V. A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Zaks, Michael A. A1 - Kurths, Jürgen T1 - Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization N2 - The chaotically driven circle map is considered as the simplest model ofphase synchronization of a chaotic continuous-time oscillator by external periodic force. The phase dynamics is analyzed via phase-locking regions of the periodic cycles embedded in the strange attractor. It is shown that full synchronization, where all the periodic cycles are phase locked, disappears via the attractor-repeller collision. Beyond the transition an intermittent regime with exponentially rare phase slips, resulting from the trajectory's hits on an eyelet, is observed. Y1 - 1997 ER - TY - JOUR A1 - Belykh, Vladimir N. A1 - Osipov, Grigory V. A1 - Kuckländer, Nina A1 - Blasius, Bernd A1 - Kurths, Jürgen T1 - Automatic control of phase synchronization in coupled complex oscillators N2 - We present an automatic control method for phase locking of regular and chaotic non-identical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic R"ossler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic R"ossler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators. Y1 - 2005 UR - http://www.agnld.uni-potsdam.de/~bernd/papers/physica_D.pdf ER - TY - JOUR A1 - Bolotov, Maxim I. A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Breathing chimera in a system of phase oscillators JF - JETP Letters N2 - Chimera states consisting of synchronous and asynchronous domains in a medium of nonlinearly coupled phase oscillators have been considered. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. The direct numerical simulation has shown that these structures under certain conditions are transformed to oscillatory (breathing) chimera regimes because of the development of instability. Y1 - 2017 U6 - https://doi.org/10.1134/S0021364017180059 SN - 0021-3640 SN - 1090-6487 VL - 106 SP - 393 EP - 399 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Chimera patterns in the Kuramoto-Battogtokh model JF - Journal of physics : A, Mathematical and theoretical N2 - Kuramoto and Battogtokh (2002 Nonlinear Phenom. Complex Syst. 5 380) discovered chimera states represented by stable coexisting synchrony and asynchrony domains in a lattice of coupled oscillators. After a reformulation in terms of a local order parameter, the problem can be reduced to partial differential equations. We find uniformly rotating, spatially periodic chimera patterns as solutions of a reversible ordinary differential equation, and demonstrate a plethora of such states. In the limit of neutral coupling they reduce to analytical solutions in the form of one-and two-point chimera patterns as well as localized chimera solitons. Patterns at weakly attracting coupling are characterized by virtue of a perturbative approach. Stability analysis reveals that only the simplest chimeras with one synchronous region are stable. KW - nonlocal coupled oscillators KW - chimera state KW - coarse-grained order parameter KW - Ott-Antonsen reduction KW - perturbation approach KW - linear stability analysis Y1 - 2017 U6 - https://doi.org/10.1088/1751-8121/aa55f1 SN - 1751-8113 SN - 1751-8121 VL - 50 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Levanova, T. A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Coherence properties of cycling chaos JF - Communications in nonlinear science & numerical simulation N2 - Cycling chaos is a heteroclinic connection between several chaotic attractors, at which switchings between the chaotic sets occur at growing time intervals. Here we characterize the coherence properties of these switchings, considering nearly periodic regimes that appear close to the cycling chaos due to imperfections or to instability. Using numerical simulations of coupled Lorenz, Roessler, and logistic map models, we show that the coherence is high in the case of imperfection (so that asymptotically the cycling chaos is very regular), while it is low close to instability of the cycling chaos. (C) 2014 Elsevier B. V. All rights reserved. KW - Heteroclinic cycle KW - Chaos KW - Coherence Y1 - 2014 U6 - https://doi.org/10.1016/j.cnsns.2014.01.011 SN - 1007-5704 SN - 1878-7274 VL - 19 IS - 8 SP - 2734 EP - 2739 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Bolotov, Maxim A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Complex chimera states in a nonlinearly coupled oscillatory medium T2 - 2018 2nd School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR) N2 - We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. Stability calculations reveal that only some of these states are stable. The direct numerical simulation has shown that these structures under certain conditions are transformed to breathing chimera regimes because of the development of instability. Further development of instability leads to turbulent chimeras. KW - phase oscillator KW - nonlocal coupling KW - synchronization KW - chimera state KW - partial synchronization KW - phase lag KW - nonlinear dynamics Y1 - 2018 SN - 978-1-5386-5818-5 U6 - https://doi.org/10.1109/DCNAIR.2018.8589210 SP - 17 EP - 20 PB - IEEE CY - New York ER - TY - JOUR A1 - Grines, Evgeny A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Describing dynamics of driven multistable oscillators with phase transfer curves JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Phase response curve is an important tool in the studies of stable self-sustained oscillations; it describes a phase shift under action of an external perturbation. We consider multistable oscillators with several stable limit cycles. Under a perturbation, transitions from one oscillating mode to another one may occur. We define phase transfer curves to describe the phase shifts at such transitions. This allows for a construction of one-dimensional maps that characterize periodically kicked multistable oscillators. We show that these maps are good approximations of the full dynamics for large periods of forcing. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5037290 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 10 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Smirnov, Lev A. A1 - Bolotov, Maxim A1 - Bolotov, Dmitri A1 - Osipov, Grigory V. A1 - Pikovsky, Arkady T1 - Finite-density-induced motility and turbulence of chimera solitons JF - New Journal of Physics N2 - We consider a one-dimensional oscillatory medium with a coupling through a diffusive linear field. In the limit of fast diffusion this setup reduces to the classical Kuramoto–Battogtokh model. We demonstrate that for a finite diffusion stable chimera solitons, namely localized synchronous domain in an infinite asynchronous environment, are possible. The solitons are stable also for finite density of oscillators, but in this case they sway with a nearly constant speed. This finite-density-induced motility disappears in the continuum limit, as the velocity of the solitons is inverse proportional to the density. A long-wave instability of the homogeneous asynchronous state causes soliton turbulence, which appears as a sequence of soliton mergings and creations. As the instability of the asynchronous state becomes stronger, this turbulence develops into a spatio-temporal intermittency. KW - chimera KW - soliton KW - finite-size effects Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac63d9 SN - 1367-2630 VL - 24 PB - IOP CY - London ER -