TY - JOUR A1 - Hassanin, Alshaimaa A1 - Kliem, Bernhard A1 - Seehafer, Norbert T1 - Helical kink instability in the confined solar eruption on 2002 May 27 JF - Astronomische Nachrichten = Astronomical notes KW - instabilities KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612446 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1082 EP - 1089 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kliem, Bernhard A1 - Seehafer, Norbert T1 - Helicity shedding by flux rope ejection JF - Astronomy and astrophysics : an international weekly journal N2 - We quantitatively address the conjecture that magnetic helicity must be shed from the Sun by eruptions launching coronal mass ejections in order to limit its accumulation in each hemisphere. By varying the ratio of guide and strapping field and the flux rope twist in a parametric simulation study of flux rope ejection from approximately marginally stable force-free equilibria, different ratios of self- and mutual helicity are set and the onset of the torus or helical kink instability is obtained. The helicity shed is found to vary over a broad range from a minor to a major part of the initial helicity, with self helicity being largely or completely shed and mutual helicity, which makes up the larger part of the initial helicity, being shed only partly. Torus-unstable configurations with subcritical twist and without a guide field shed up to about two-thirds of the initial helicity, while a highly twisted, kink-unstable configuration sheds only about one-quarter. The parametric study also yields stable force-free flux rope equilibria up to a total flux-normalized helicity of 0.25, with a ratio of self- to total helicity of 0.32 and a ratio of flux rope to external poloidal flux of 0.94. These results numerically demonstrate the conjecture of helicity shedding by coronal mass ejections and provide a first account of its parametric dependence. Both self- and mutual helicity are shed significantly; this reduces the total initial helicity by a fraction of ∼0.4--0.65 for typical source region parameters. KW - instabilities KW - magnetic fields KW - magnetohydrodynamics (MHD) KW - Sun KW - corona KW - coronal mass ejections (CMEs) KW - flares Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142422 SN - 0004-6361 SN - 1432-0746 VL - 659 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Driel-Gesztelyi, L. van A1 - Baker, Daniel N. A1 - Török, Tibor A1 - Pariat, Etienne A1 - Green, L. M. A1 - Williams, D. R. A1 - Carlyle, J. A1 - Valori, G. A1 - Démoulin, Pascal A1 - Matthews, S. A. A1 - Kliem, Bernhard A1 - Malherbe, J.-M. T1 - Magnetic reconnection driven by filament eruption in the 7 June 2011 event T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - During an unusually massive filament eruption on 7 June 2011, SDO/AIA imaged for the first time significant EUV emission around a magnetic reconnection region in the solar corona. The reconnection occurred between magnetic fields of the laterally expanding CME and a neighbouring active region. A pre-existing quasi-separatrix layer was activated in the process. This scenario is supported by data-constrained numerical simulations of the eruption. Observations show that dense cool filament plasma was re-directed and heated in situ, producing coronal-temperature emission around the reconnection region. These results provide the first direct observational evidence, supported by MHD simulations and magnetic modelling, that a large-scale re-configuration of the coronal magnetic field takes place during solar eruptions via the process of magnetic reconnection. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 608 KW - MHD KW - instabilities KW - Sun: activity KW - magnetic fields KW - coronal mass ejections (CMEs) KW - filaments KW - methods: numerical KW - data analysis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415671 IS - 608 SP - 502 EP - 503 ER - TY - JOUR A1 - Kliem, Bernhard A1 - Toeroek, Tibor A1 - Titov, Viacheslav S. A1 - Lionello, Roberto A1 - Linker, Jon A. A1 - Liu, Rui A1 - Liu, Chang A1 - Wang, Haimin T1 - Slow rise and partial eruption of a double-decker filament. II. A double flux rope model JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov & Demoulin and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically becoming unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper I. It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium. KW - instabilities KW - magnetohydrodynamics (MHD) KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/792/2/107 SN - 0004-637X SN - 1538-4357 VL - 792 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER -