TY - JOUR A1 - Tittel, Jörg A1 - Bissinger, Vera A1 - Gaedke, Ursula A1 - Kamjunke, Norbert T1 - Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake N2 - Plankton communities in acidic mining lakes (pH 2.5-3.3) are species-poor because they face extreme environmental conditions, e.g. 150 mg l(-1) Fe2++Fe3+. We investigated the growth characteristics of the dominant pigmented species, the flagellate Chlamydomonas acidophila, in semi-continuous culture experiments under in situ conditions. The following hypotheses were tested: (1) Low inorganic carbon (IC) concentrations in the epilimnion (e.g. 0.3 mg l(-1)) arising from the low pH limit phototrophic growth (H-1); (2) the additional use of dissolved organic carbon (mixotrophy) leads to higher growth rates under IC-limitation (H-2), and (3) phagotrophy is not relevant (H-3). H- 1 was supported as the culture experiments, in situ PAR and IC concentrations indicated that IC potentially limited phototrophic growth in the mixed surface layers. H-2 was also supported: mixotrophic growth always exceeded pure phototrophic growth even when photosynthesis was saturated. Dark growth in filtered lake water illuminated prior to inoculation provided evidence that Chlamydomonas was able to use the natural DOC. The alga did not grow on bacteria, thus confirming H-3. Chlamydomonas exhibited a remarkable resistance to starvation in the dark. The compensation light intensity (ca. 20 mu mol photons m(-2) s(-1)) and the maximum phototrophic growth (1.50 d(-1)) fell within the range of algae from non-acidic waters. Overall, Chlamydomonas, a typical r-strategist in circum-neutral systems, showed characteristics of a K-strategist in the stable, acidic lake environment in achieving moderate growth rates and minimizing metabolic losses. (c) 2005 Elsevier GmbH. All rights reserved Y1 - 2005 SN - 1434-4610 ER - TY - JOUR A1 - Kamjunke, Norbert A1 - Tittel, Jörg A1 - Krumbeck, H. A1 - Beulker, Camilla A1 - Poerschmann, J. T1 - High heterotrophic bacterial production in acidic, iron-rich mining lakes N2 - The acidic mining lakes of Eastern Germany are characterized by their extremely low pH and high iron concentrations. Low concentrations of CO2 in the epilimnion due to the low pH and reduced light transmission due to dissolved ferric iron potentially limit phytoplankton primary production (PP), whereas dissolved organic carbon (DOC) may promote heterotrophic production of bacteria (HP). We, therefore, tested whether HP exceeds PP in three lakes differing in pH and iron concentration (mean pH 2.3-3.0, 23-500 mg Fe L-1). Bacterial biomass and HP achieved highest values in the most acidic, most iron-rich lake, whereas PP was highest in the least acidic lake. HP was often higher than PP (ratio HP/PP up to 11), indicating that planktonic PP was not the main carbon source for the bacteria. HP was not related to PP and DOC, but HP as well as bacterial biomass increased with decreasing pH. Light stimulated the formation of ferrous iron, changed the DOC composition, and increased the HP in laboratory experiments, suggesting that iron photoreduction caused DOC degradation. This may explain why we found the highest HP in the most acidic and most rich lake. Overall, the importance of bacteria in the cycling of matter and as a basis for the whole food web seemed to increase in more acidic lakes with higher iron concentrations Y1 - 2005 SN - 0095-3628 ER -