TY - JOUR A1 - Zhu, Jian A1 - Stoyanov, Hristiyan A1 - Kofod, Guggi A1 - Suo, Zhigang T1 - Large deformation and electromechanical instability of a dielectric elastomer tube actuator N2 - This paper theoretically analyzes a dielectric elastomer tube actuator (DETA). Subject to a voltage difference between the inner and outer surfaces, the actuator reduces in thickness and expands in length, so that the same voltage will induce an even higher electric field. This positive feedback may cause the actuator to thin down drastically, resulting in electrical breakdown. We obtain an analytical solution of the actuator undergoing finite deformation when the elastomer obeys the neo-Hookean model. The critical strain of actuation is calculated in terms of various parameters of design. We also discuss the effect of the strain-stiffening on electromechanical behavior of DETAs by using the model of freely joined links. (C) 2010 American Institute of Physics. [doi:10.1063/1.3490186] Y1 - 2010 UR - http://jap.aip.org/ U6 - https://doi.org/10.1063/1.3490186 SN - 0021-8979 ER - TY - JOUR A1 - Zhu, Jian A1 - Kollosche, Matthias A1 - Lu, Tongqing A1 - Kofod, Guggi A1 - Suo, Zhigang T1 - Two types of transitions to wrinkles in dielectric elastomers JF - Soft matter N2 - A membrane of a dielectric elastomer coated with compliant electrodes may form wrinkles as the applied voltage is ramped up. We present a combination of experiment and theory to investigate the transition to wrinkles using a clamped membrane subject to a constant force and a voltage ramp. Two types of transitions are identified. In type-I transition, the voltage-stretch curve is N-shaped, and flat and wrinkled regions coexist in separate areas of the membrane. The type-I transition progresses by nucleation of small wrinkled regions, followed by the growth of the wrinkled regions at the expense of the flat regions, until the entire membrane is wrinkled. By contrast, in type-II transition, the voltage-stretch curve is monotonic, and the entire flat membrane becomes wrinkled with no nucleation barrier. The two types of transitions are analogous to the first and the second order phase transitions. While the type-I transition is accompanied by a jump in the vertical displacement, type-II transition is accompanied by a continuous change in the vertical displacement. Such transitions may enable applications in muscle-like actuation and energy harvesting, where large deformation and large energy of conversion are desired. Y1 - 2012 U6 - https://doi.org/10.1039/c2sm26034d SN - 1744-683X VL - 8 IS - 34 SP - 8840 EP - 8846 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Wache, Remi A1 - McCarthy, Denis N. A1 - Risse, Sebastian A1 - Kofod, Guggi T1 - Rotary Motion Achieved by New Torsional Dielectric Elastomer Actuators Design JF - IEEE ASME transactions on mechatronics N2 - This paper reports a new way to produce a rotation motion actuated by dielectric elastomer actuators. Two specific electrode designs have been developed and the rotation of the actuator centers has been demonstrated and measured. At low strains, the rotation shows a nearly quadratic dependence with the voltage. This behavior was used to compare the performances between the two proposed designs. Among the tested configurations, a maximal rotation of 10 degrees was achieved. KW - Dielectric elastomer actuator (DEA) KW - electroactive polymer KW - rotation Y1 - 2015 U6 - https://doi.org/10.1109/TMECH.2014.2301633 SN - 1083-4435 SN - 1941-014X VL - 20 IS - 2 SP - 975 EP - 977 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Mc Carthy, Denis N. A1 - Kollosche, Matthias A1 - Kofod, Guggi T1 - Dielectric properties and electric breakdown strength of a subpercolative composite of carbon black in thermoplastic copolymer N2 - We investigate the dielectric properties and electric breakdown strength of subpercolative composites of conductive carbon black particles in a rubber insulating matrix. A significant increase in the permittivity in the vicinity of the insulator to conductor transition was observed, with relatively low increases in dielectric loss; however, a rapid decrease in electric breakdown strength was inevitable. A steplike feature was ascribed to agglomeration effects. The low ultimate values of the electric field strength of such composites appear to prohibit practical use. Y1 - 2009 UR - http://apl.aip.org/ U6 - https://doi.org/10.1063/1.3154553 SN - 0003-6951 ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Kollosche, Matthias A1 - Risse, Sebastian A1 - Wache, Remi A1 - Kofod, Guggi T1 - Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles JF - Advanced materials N2 - Block copolymer elastomer conductors (BEC) are mixtures of block copolymers grafted with conducting polymers, which are found to support very large strains, while retaining a high level of conductivity. These novel materials may find use in stretchable electronics. The use of BEC is demonstrated in a capacitive strain sensor and in an artificial muscle of the dielectric elastomer actuator type, supporting more than 100% actuation strain and capacity strain sensitivity up to 300%. KW - soft electrical connections KW - stretchable electronics KW - elastic conductor KW - compliant electrodes Y1 - 2013 U6 - https://doi.org/10.1002/adma.201202728 SN - 0935-9648 VL - 25 IS - 4 SP - 578 EP - 583 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Kollosche, Matthias A1 - Risse, Sebastian A1 - McCarthy, Denis N. A1 - Kofod, Guggi T1 - Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control JF - Soft matter N2 - Soft, physically crosslinking, block copolymer elastomers were filled with surface-treated nanoparticles, in order to evaluate the possibility for improvement of their properties when used as soft dielectric actuators. The nanoparticles led to improvements in dielectric properties, however they also reinforced the elastomer matrix. Comparing dielectric spectra of composites with untreated and surface-treated particles showed a measurable influence of the surface on the dielectric loss behaviour for high filler amounts, strongly indicating an improved host-guest interaction for the surface-treated particles. Breakdown strength was measured using a test bench and was found to be in good agreement with the results from the actuation measurements. Actuation responses predicted by a model for prestrained actuators agreed well with measurements up to a filler amount of 20%(vol). Strong improvements in actuation behaviour were observed, with an optimum near 15%(vol) nanoparticles, corresponding to a reduction in electrical field of 27% for identical actuation strains. The use of physically crosslinking elastomer ensured the mechanical properties of the matrix elastomer were unchanged by nanoparticles effecting the crosslinking reaction, contrary to similar experiments performed with chemically crosslinking elastomers. This allows for a firm conclusion about the positive effects of surface-treated nanoparticles on actuation behavior. Y1 - 2011 U6 - https://doi.org/10.1039/c0sm00715c SN - 1744-683X SN - 1744-6848 VL - 7 IS - 1 SP - 194 EP - 202 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Kollosche, Matthias A1 - McCarthy, Denis N. A1 - Kofod, Guggi T1 - Molecular composites with enhanced energy density for electroactive polymers N2 - Actuators based on soft dielectric elastomers deform due to electric field induced Maxwell's stress, interacting with the mechanical properties of the material. The relatively high operating voltages of such actuators can be reduced by increasing the permittivity of the active material, while maintaining the mechanical properties and high electrical breakdown strength. Approaches relying on the use of highly polarizable molecules or conjugated polymers have so far provided the best results, however it has been difficult to maintain high breakdown strengths. In this work, a new approach for increasing the electrostatic energy density of a soft polymer based on molecular composites is presented, relying on chemically grafting soft gel-state pi-conjugated conducting macromolecules (polyaniline (PANI)) to a flexible elastomer backbone SEBS-g-MA (poly-styrene-co-ethylene-co-butylene-co-styrene-g-maleic anhydride). The approach was found to result in composites of increased permittivity (470% over the elastomer matrix) with hardly any reduction in breakdown strength (from 140 to 120 V mu m(-1)), resulting in a large increase in stored electrostatic energy. This led to an improvement in the measured electromechanical response as well as in the maximum actuation strain. A transition was observed when amounts of PANI exceeded 2 vol%, which was ascribed to the exhaustion of the MA- functionality of the SEBS-g-MA. The transition led to drastic increases in permittivity and conductivity, and a sharp drop in electrical breakdown strength. Although the transition caused further improvement of the electromechanical response, the reduction in electrical breakdown strength caused a limitation of the maximum achievable actuation strain. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/jm/index.asp U6 - https://doi.org/10.1039/C0jm00519c SN - 0959-9428 ER - TY - JOUR A1 - Risse, Sebastian A1 - Kussmaul, Björn A1 - Krüger, Hartmut A1 - Kofod, Guggi T1 - A versatile method for enhancement of electromechanical sensitivity of silicone elastomers JF - RSC Advances N2 - Dielectric elastomer actuators (DEAs) draw their function from their dielectric and mechanical properties. The paper describes the fabrication and various properties of molecularly grafted silicone elastomer films. This was achieved by addition of high-dipole molecular co-substituents to off-the-shelf silicone elastomer kits, Elastosil RT 625 and Sylgard 184 by Wacker and Dow Corning, respectively. Strong push-pull dipoles were chemically grafted to both polymer networks during a one step film formation process. All manufactured films were characterized using (13) C-NMR and FT-IR spectroscopy, confirming a successful attachment of the dipoles to the silicone network. Differential scanning calorimetry (DSC) results showed that grafted dipoles were distributed homogeneously throughout the material avoiding the formation of nano-scale aggregates. The permittivity increased with the amount of dipole at all frequencies, while the Young's modulus and electrical breakdown strength were reduced. Actuation strain measurements in the pure shear configuration independently confirmed the increase in electromechanical sensitivity. The ability to enhance electromechanical properties of off-the-shelf materials could strongly expand the range of actuator properties available to researchers and end-users. Y1 - 2012 U6 - https://doi.org/10.1039/c2ra21541a SN - 2046-2069 VL - 2 IS - 24 SP - 9029 EP - 9035 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Risse, Sebastian A1 - Kussmaul, Bjoern A1 - Krüger, Hartmut A1 - Kofod, Guggi T1 - Synergistic improvement of actuation properties with compatibilized high permittivity filler JF - Advanced functional materials N2 - Electroactive polymers can be used for actuators with many desirable features, including high electromechanical energy density, low weight, compactness, direct voltage control, and complete silence during actuation. These features may enable personalized robotics with much higher ability to delicately manipulate their surroundings than can be achieved with currently available actuators; however, much work is still necessary to enhance the electroactive materials. Electric field-driven actuator materials are improved by an increase in permittivity and by a reduction in stiffness. Here, a synergistic enhancement method based on a macromolecular plasticizing filler molecule with a combination of both high dipole moment and compatibilizer moieties, synthesized to simultaneously ensure improvement of electromechanical properties and compatibility with the host matrix is presented. Measurements show an 85% increase in permittivity combined with 290% reduction in mechanical stiffness. NMR measurements confirm the structure of the filler while DSC measurements confirm that it is compatible with the host matrix at all the mixture ratios investigated. Actuation strain measurements in the pure shear configuration display an increase in sensitivity to the electrical field of more than 450%, confirming that the filler molecule does not only improve dielectric and mechanical properties, it also leads to a synergistic enhancement of actuation properties by simple means. KW - allycyanide KW - silicone-based dielectric elastomer actuators KW - permittivity enhancement KW - compatibilized filler molecules Y1 - 2012 U6 - https://doi.org/10.1002/adfm.201200320 SN - 1616-301X VL - 22 IS - 18 SP - 3958 EP - 3962 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - McCarthy, Denis N. A1 - Stoyanov, Hristiyan A1 - Rychkov, Dmitry A1 - Ragusch, Huelya A1 - Melzer, Michael A1 - Kofod, Guggi T1 - Increased permittivity nanocomposite dielectrics by controlled interfacial interactions JF - Composites science and technology N2 - The use of nanoparticles in polymer composite dielectrics has promised great improvements, but useful results have been elusive. Here, the importance of the interfacial interactions between the nanoparticles and the polymer matrix are investigated in TiO2 nanocomposites for dielectric materials using surface functionalisation. The interface is observed to dominate the nanocomposite properties and leads to a threefold increase in permittivity at volume fractions as low as 10%. Surface functionalisation of the filler nanoparticles with silanes allows control of this interface, avoiding significant degradation of the other important material properties, particularly electrical breakdown strength, and resulting in a material that is demonstrated successfully as an active material in a dielectric elastomer actuator application with increased work output compared to the pure polymer. Although further permittivity increases are observed when the interface regions have formed a percolation network, the other material properties deteriorate. The observation of percolation behaviour allows the interface thickness to be estimated. KW - Ceramics KW - Nanocomposites KW - Actuator KW - Interface KW - Electrical properties Y1 - 2012 U6 - https://doi.org/10.1016/j.compscitech.2012.01.026 SN - 0266-3538 VL - 72 IS - 6 SP - 731 EP - 736 PB - Elsevier CY - Oxford ER -