TY - JOUR A1 - Wieneke, Nadine A1 - Neuschaefer-Rube, Frank A1 - Bode, L. M. A1 - Kuna, Manuela A1 - Andres, Jesus A1 - Carnevali Junior, Luiz Carlos A1 - Hirsch-Ernst, Karen I. A1 - Püschel, Gerhard Paul T1 - Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR alpha agonist WY14643 in rat hepatocytes N2 - Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feed back-control led regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase 11 enzymes of xenobiotic metabolism. We have recently shown, that PPAR alpha agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR alpha agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPARa agonist WY14643 to a larger extent than after induction with either Compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UCT1A10. The PPAR alpha-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting- incluced reduction in energy expenditure by fatty acids as natural PPARa ligands. The synergism of the PPAR alpha agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/0041008X U6 - https://doi.org/10.1016/j.taap.2009.07.014 SN - 0041-008X ER - TY - GEN A1 - Camargo, Rodolfo Gonzalez A1 - Riccardi, Daniela Mendes dos Reis A1 - Ribeiro, Henrique Quintas Teixeira A1 - Carnevali Junior, Luiz Carlos A1 - Matos-Neto, Emidio Marques de A1 - Enjiu, Lucas A1 - Neves, Rodrigo Xavier A1 - Lima, Joanna Darck Carola Correia A1 - Figuerêdo, Raquel Galvão A1 - Alcântara, Paulo Sérgio Martins de A1 - Maximiano, Linda A1 - Otoch, José A1 - Batista Jr., Miguel Luiz A1 - Püschel, Gerhard Paul A1 - Seelaender, Marilia T1 - NF-kappa Bp65 and expression of its pro-inflammatory target genes are upregulated in the subcutaneous adipose tissue of cachectic cancer patients N2 - Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-κB). We have examined the gene expression of the subunits NF-κBp65 and NF-κBp50, as well as NF-κBp65 and NF-κBp50 binding, the gene expression of pro-inflammatory mediators under NF-κB control (IL-1β, IL-6, INF-γ, TNF-α, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-κBp65 and its target genes expression (TNF-α, IL-1β, MCP-1 and IκB-α) were significantly higher in cachectic cancer patients. Moreover, NF-κBp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-κB pathway plays a role in the promotion of WAT inflammation during cachexia. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 349 KW - cancer cachexia KW - inflammation KW - white adipose tissue KW - NF-κB KW - IκB Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400163 ER - TY - JOUR A1 - Camargo, Rodolfo Gonzalez A1 - dos Reis Riccardi, Daniela Mendes A1 - Teixeira Ribeiro, Henrique Quintas A1 - Carnevali Junior, Luiz Carlos A1 - de Matos-Neto, Emidio Marques A1 - Enjiu, Lucas A1 - Neves, Rodrigo Xavier A1 - Carola Correia Lima, Joanna Darck A1 - Figueredo, Raquel Galvao A1 - Martins de Alcantara, Paulo Sergio A1 - Maximiano, Linda A1 - Otoch, Jose A1 - Batista Jr., Miguel Luiz A1 - Püschel, Gerhard Paul A1 - Seelaender, Marilia T1 - NF-kappa Bp65 and Expression of Its Pro-Inflammatory Target Genes Are Upregulated in the Subcutaneous Adipose Tissue of Cachectic Cancer Patients JF - Nutrients N2 - Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-B). We have examined the gene expression of the subunits NF-Bp65 and NF-Bp50, as well as NF-Bp65 and NF-Bp50 binding, the gene expression of pro-inflammatory mediators under NF-B control (IL-1, IL-6, INF-, TNF-, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IB-). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-Bp65 and its target genes expression (TNF-, IL-1, MCP-1 and IB-) were significantly higher in cachectic cancer patients. Moreover, NF-Bp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-B pathway plays a role in the promotion of WAT inflammation during cachexia. KW - cancer cachexia KW - inflammation KW - white adipose tissue KW - NF-B KW - IB Y1 - 2015 U6 - https://doi.org/10.3390/nu7064465 SN - 2072-6643 VL - 7 IS - 6 SP - 4465 EP - 4479 PB - MDPI CY - Basel ER -